Skip to main content
Log in

Calorimetry studies of a chemical oscillatory system

The effect of putrescine on KSCN-H2O2-CuSO4-NaOH reactions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of putrescine (PUT) on KSCN-H2O2-CuSO4-NaOH oscillating system was investigated by calorimetric method. The oscillating reaction was monitored in a closed reactor with stirring, and the result showed that the oscillating period was linearly related with putrescine concentration and the numbers of oscillation decreased with increase in putrescine concentration. When [PUT]=2.83·10−4 M, no oscillation was observed. A possible mechanism is proposed that putrescine is a scavenger of the active-oxygen species. The result of numerical simulation by a simplified mechanism consisting of 18 kinetic steps and 16 variables is consistent with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Bray, J. Am. Chem. Soc., 43 (1921) 1262.

    Article  CAS  Google Scholar 

  2. M. Orban and I. R. Epstein, J. Am. Chem. Soc., 107 (1985) 2302.

    Article  CAS  Google Scholar 

  3. M. Orban and I. R. Epstein, J. Am. Chem. Soc., 109 (1987) 101.

    Article  CAS  Google Scholar 

  4. M. Orban J. Am. Chem. Soc., 108 (1986) 6893.

    Article  CAS  Google Scholar 

  5. Qing-Yu Gao, Wan-Hua Xue, Kexue Tongbao, 41 (1996) 1289.

    Google Scholar 

  6. B. Venkataraman and P. G. Sorensen, J. Phys. Chem., 95 (1991) 5707.

    Article  CAS  Google Scholar 

  7. E. W. Hansen and P. Ruoff, J. Phys. Chem., 93 (1989) 2696.

    Article  CAS  Google Scholar 

  8. J. Ágreda, D. Barrağan and A. Gümez, J. Therm. Anal. Cal., 74 (2003) 875.

    Article  Google Scholar 

  9. R. Chadha, N. Kashid and D. V. S. Jain, J. Therm. Anal. Cal., 81 (2005) 277.

    Article  CAS  Google Scholar 

  10. A. A. Saboury, M. S. Atri, M. H. Sanati and M. Sadeghi, J. Therm. Anal. Cal., 83 (2006) 175.

    Article  CAS  Google Scholar 

  11. S. Fujisawa and Y. Kadoma, Anticancer Res., 25 (2005) 965.

    CAS  Google Scholar 

  12. A. M. L. Kafy, C. G. Haigh and D. A. Lewis, Agents and Actions, 18 (1986) 555.

    Article  CAS  Google Scholar 

  13. S. Verma and S. Narayan Mishra, Plant Physiology, 162 (2005) 667.

    Google Scholar 

  14. T. M. Wengenack, G. L. Curran and E. E. Olson, Brain Res., 767 (1997) 128.

    Article  CAS  Google Scholar 

  15. Y.-J. Huang, C.-X. Wang and S.-H. Song, J. Wuhan Univ. (Nat. Sci. Ed.), 6 (1994) 76.

    Google Scholar 

  16. R. G. Bates and H. B. Hetzer, J. Phys. Chem., 65 (1961) 667.

    Article  CAS  Google Scholar 

  17. R. Jiménez-Prieto, M. Silva and D. Pérez-Bendito, Anal. Chem., 67 (1995) 729.

    Article  Google Scholar 

  18. J.-Z. Gao, H. Yang, X.-H. Liu, Talanta, 57 (2002) 105.

    Article  CAS  Google Scholar 

  19. Y. Luo, M. Orban, K. Kustin, J. Am. Chem. Soc., 111 (1989) 4541.

    Article  CAS  Google Scholar 

  20. X.-Y. Wang and Q. Zhou, Zhiwuxue Tongbao 19 (2000) 11.

    Google Scholar 

  21. C. W. Gear, Prentice-Hall: Englewood Cliffs, NJ 1971.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yuwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jingyan, S., Yuwen, L., Jie, L. et al. Calorimetry studies of a chemical oscillatory system. J Therm Anal Calorim 90, 761–767 (2007). https://doi.org/10.1007/s10973-006-8214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8214-x

Keywords

Navigation