Skip to main content
Log in

Influence of the atmosphere on the thermal decomposition kinetics of the CaCO3 content of PFBC coal flying ash

  • Regular Papers
  • Material Sciences/Kinetics/Geosciences
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behavior of hard coal fly ash (HCA2), obtained from the combustion of an Australian hard coal in thermoelectric power plants, in different atmospheres (air, N2 and N2-H2 mixture), was studied using thermogravimetry (TG), infrared-evolved gas analysis (IR-EGA), differential scanning calorimetry (DSC) and thermodilatometry (DIL) techniques. It was found that changing of the applied atmosphere affects the carbon content of the ash which results in different thermal decomposition behaviors. In air, the carbon content was oxidized to carbon dioxide before the decomposition of carbonate. In N2 or in N2-H2 atmospheres, the carbon content acts as a spacer causing a fewer points of contact between calcium carbonate particles, thus increasing the interface area which results in a decrease of the carbonate decomposition temperature. Following the carbonate decomposition, the iron oxide content of the ash undergoes a reductive decomposition reaction with the unburned carbon. This oxidation-reduction reaction was found to be fast and go to completion in presence of the N2-H2 mixture than in the pure nitrogen atmosphere due to the reducing effect of the hydrogen.

The kinetics of the carbonate decomposition step, in air and N2-H2 mixture was performed under non-isothermal conditions using different integral methods of analysis. The dynamic TG curves obeyed the Avrami-Erofeev equation (A2) in air, and phase boundary controlled reaction equation (R2) in N2-H2 mixture. The change in the reaction mechanism and the difference in the calculated values of activation parameters with the change of the atmosphere were discussed in view of effect of the atmosphere on the carbon content of the ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Grochawiak, J. Golas, H. Jankowski and S. Kozinski, Fuel, 83 (2004) 1847.

    Article  CAS  Google Scholar 

  2. O. E. Manz, Fuel, 78 (1999) 133.

    Article  CAS  Google Scholar 

  3. U. M. Graham, Fuel, 76 (1997) 689.

    Article  CAS  Google Scholar 

  4. M. J. McCarthy and R. K. Dhir, Fuel, 80 (2001) 1659.

    Article  Google Scholar 

  5. W. Roszczynialski and W. N. Wczelik, J. Therm. Anal. Cal., 77 (2004) 151.

    Article  CAS  Google Scholar 

  6. V. Rahhal and R. Talero, J. Therm. Anal. Cal., 87 (2004) 191.

    Article  Google Scholar 

  7. J. Paya, J. Monzo, M. V. Borrachero, E. Perris and F. Amahjour, Cem. Concr. Res., 28 (1998) 675.

    Article  CAS  Google Scholar 

  8. P. Fermo, F. Cariati, S. Satacesaria, S. Bruni, M. Lasagni, M. Tettamanti, E. Collina and D. Pitea, Environ. Sci. Technol., 34 (2000) 4370.

    Article  CAS  Google Scholar 

  9. M. Fan and R. C. Brown, Energy Fuels, 15 (2001) 15.

    Google Scholar 

  10. G. H. Hemmer, D. Hoff and G. Kasper, Adv. Powder Technol., 14 (2003) 631.

    Article  CAS  Google Scholar 

  11. C. Kanaoka, M. Hata and H. Makino, Powder Technol., 118 (2001) 107.

    Article  CAS  Google Scholar 

  12. M. Maciejewski, Thermochim. Acta, 355 (2000) 145.

    Article  CAS  Google Scholar 

  13. J. H. Khinast, G. F. Krammer, Ch. Brunner and G. Staudinger, Chem. Eng. Sci., 51 (1996) 623.

    Article  CAS  Google Scholar 

  14. J. M. Criado, M. Gonzalez, J. Malek and A. Ortega, Thermochim. Acta, 254 (1995) 121.

    Article  CAS  Google Scholar 

  15. Y. Wang and W. J. Thomson, Chem. Eng. Sci., 50 (1995) 1373.

    Article  CAS  Google Scholar 

  16. J. P. Sanders and P. K. Gallagher, Thermochim. Acta, 388 (2002) 115.

    Article  CAS  Google Scholar 

  17. D. Dollimore, P. Tong and K. S. Alexander, Thermochim. Acta, 282/283 (1996) 13.

    Article  CAS  Google Scholar 

  18. NIST Chemistry Web Book, Standard reference data base No. 69-March 2003.

  19. El-H. M. Diefallah, Thermochim. Acta, 202 (1992) 1.

    Article  CAS  Google Scholar 

  20. El-H. M. Diefallah, A. Y. Obaid, A. H. Qusti, A. A. El-Bellihi and A. M. Abdel Wahab, Thermochim. Acta, 274 (1996) 172.

    Article  Google Scholar 

  21. M. A. Gabal, Thermochim. Acta, 412 (2004) 55.

    Article  CAS  Google Scholar 

  22. E. Urbanovici, C. Popescu and E. Segal, J. Therm. Anal. Cal., 58 (1999) 683.

    Article  CAS  Google Scholar 

  23. J. H. Flynn, Thermochim. Acta, 282/283 (1996) 35.

    Article  CAS  Google Scholar 

  24. C. K. Hsu, Thermochim. Acta, 392-393 (2002) 157.

    Article  CAS  Google Scholar 

  25. R. A. Higgins, Engineering Metallurgy, 2nd Ed. Vol. 1, ELBS, London 1974.

    Google Scholar 

  26. T. Hatakeyama and Z. Liu, Handbook of Thermal Analysis, Wiley, Weinheim 1998.

    Google Scholar 

  27. B. V. L’Vov, L. K. Polzik and V. L. Ugolkov, Thermochim. Acta, 390 (2002) 5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabal, M.A., Hoff, D. & Kasper, G. Influence of the atmosphere on the thermal decomposition kinetics of the CaCO3 content of PFBC coal flying ash. J Therm Anal Calorim 89, 109–116 (2007). https://doi.org/10.1007/s10973-005-7494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7494-x

Keywords

Navigation