Skip to main content
Log in

Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this research is to know, through the flow of heat released, the effect of the addition of calcium hydroxide and the temperature on the alkaline activation of coal fly ash with a solution of sodium hydroxide. The heat flow of the samples was measured from an isothermal conduction microcalorimeter at 25, 35 and 45 °C, with percentages of calcium hydroxide between 5 and 15 mass% and concentrations of sodium hydroxide between 6 and 10 M. The data obtained were analyzed by the ANOVA technique using a response surface. Calcium hydroxide mainly supplies nucleation sites and increases the rate of reaction during the latent period. Sodium hydroxide increases the degree of reaction, the amount and rate of the reactions up to concentrations of 10 M. The time of the wetting and dissolving processes was 6 min, independent of the temperature and composition of the mixture. The maximum amount of energy released was 200 kJ kg−1, seeking to be minimal in the initial processes and maximum in the end. The calculated apparent activation energy was 361.20 ± 16.47 kJ mol−1 which reflects the importance of the temperature in the alkaline activation processes. The temperature does not significantly affect the amount of energy released, but does affect the rate and number of reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, et al. A comprehensive review on the applications of coal fly ash. Earth-Sci Rev. 2015;141:105–21.

    Article  Google Scholar 

  2. Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, et al. Fly ash-based geopolymer: clean production, properties and applications (review). J Clean Prod. 2016;125:253–67.

    Article  CAS  Google Scholar 

  3. Shaheen SM, Hooda PS, Tsadilas CD. Opportunities and challenges in the use of coal fly ash for soil improvements: a review. J Environ Manag. 2014;145C:249–67.

    Article  Google Scholar 

  4. Liew YM, Heah CY, Mohd Mustafa AB, Kamarudin H. Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci. 2016;83:595–629.

    Article  CAS  Google Scholar 

  5. Shi C, Krivenko P, Roy DM. Alkali-activated cements and concretes. 1st ed. New York: Taylor and Francis; 2006.

    Book  Google Scholar 

  6. Davidovits J. Geopolymer chemistry and applications. 2nd ed. Saint-Quentin: Institut Geopolymere; 2008.

    Google Scholar 

  7. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34(9):1489–98.

    Article  CAS  Google Scholar 

  8. Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–30.

    Article  Google Scholar 

  9. Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41(12):1232–43.

    Article  CAS  Google Scholar 

  10. Provis JL, Van Deventer JSJ. Geopolymers structure, processing, properties and industrial applications. 1st ed. Cambridge: Woodhead Publishing; 2009.

    Google Scholar 

  11. Habert G, D’Espinose De Lacaillerie JB, Roussel N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod. 2011;19(11):1229–38.

    Article  CAS  Google Scholar 

  12. Ruiz-Santaquiteria C, Fernández-Jiménez A, Palomo A. Review. Alternative prime materials for developing new cements: alkaline activation of alkali aluminosilicate glasses. Ceram Int. 2016;42(8):9333–40.

    Article  CAS  Google Scholar 

  13. Mehta A, Siddique R. An overview of geopolymers derived from industrial by-products. Constr Build Mater. 2016;127:183–98.

    Article  CAS  Google Scholar 

  14. Pacheco-Torgal F, Jalali S, Labrincha J, John VM. Eco-efficient concrete. 1st ed. Cambridge: Woodhead Publishing Limited; 2013. p. 1–577.

    Book  Google Scholar 

  15. Neupane K. Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of portland cement in concrete industry. Mech Mater. 2016;103:110–22.

    Article  Google Scholar 

  16. García-lodeiro I, Maltseva O, Palomo Á, Fernández-jiménez A. Hybrid alkaline cement. Part I: fundamentals. Rom J Mater. 2012;42(4):330–5.

    Google Scholar 

  17. Shi C, AF Jiménez, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 2011;41(7):750–63.

    Article  CAS  Google Scholar 

  18. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res. 2011;41(9):923–31.

    Article  CAS  Google Scholar 

  19. Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40(9):1341–9.

    Article  CAS  Google Scholar 

  20. Palomo A, Krivenko P, García-Lodeiro I, Kavalerova E, Maltseva O, Fernández-Jiménez A. A review on alkaline activation: new analytical perspectives. Mater Constr. 2014;64(315):1–24.

    Article  Google Scholar 

  21. Yip CK, Lukey GC, van Deventer JSJ. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688–97.

    Article  CAS  Google Scholar 

  22. Hewlett PC. Lea’s chemistry of cement and concrete. 4th ed. London: Elsevier Science & Technology Books; 2004.

    Google Scholar 

  23. Tempest B, Sanusi O, Gergely J, Ogunro V, Weggel D. Compressive Strength and Embodied Energy Optimization of Fly Ash Based Geopolymer Concrete. In: 2009 world coal ash conference. 2009; P. 1–17.

  24. Witherspoon R, Wang H, Aravinthan T, Omar T. Energy and emissions analysis of fly ash based geopolymers. In: SSEE 2009 conferernce, Melbourne 2009. 2009; P. 1–11.

  25. Rashad AM. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des. 2014;53:1005–25.

    Article  CAS  Google Scholar 

  26. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel. 2011;90(6):2118–24.

    Article  CAS  Google Scholar 

  27. Puertas F, Fernández-Jiménez A, Blanco-Varela MT. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res. 2004;34(1):139–48.

    Article  CAS  Google Scholar 

  28. Shi C. Early hydration and microstructure development of alkali- activated slag cement pastes. X Intern Cong Chem, Cem (Goteborg);3(3ii099), Trondheim, Norway. 1997.

  29. Vickers L, van Riessen A, Rickard WDA. Fire—resistant geopolymers role of fibres and fillers to enhance thermal properties. Briefs in materials. New York: Springer; 2015. p. 1–129.

    Google Scholar 

  30. Provis JL, Van Deventer JSJ. Alkali activated materials: state of the art report of RILEM TC 224-AAM. Dordrecht: RILEM/Springer; 2014.

    Book  Google Scholar 

  31. Fernández-Jiménez A, Palomo A, Criado M. Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res. 2005;35(6):1204–9.

    Article  Google Scholar 

  32. Shi CJ, Day RL. A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res. 1995;25(6):1333–46.

    Article  CAS  Google Scholar 

  33. Yao X, Zhang Z, Zhu H, Chen Y. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim Acta. 2009;493(1–2):49–54.

    Article  CAS  Google Scholar 

  34. Gao X, Yu QL, Brouwers HJH. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater. 2015;80:105–15.

    Article  Google Scholar 

  35. Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta. 2012;539:23–33.

    Article  CAS  Google Scholar 

  36. Alonso S, Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett. 2001;47:55–62.

    Article  CAS  Google Scholar 

  37. Gao X, Yu QL, Brouwers HJH. Properties of alkali activated slag–fly ash blends with limestone addition. Cem Concr Compos. 2015;59:119–28.

    Article  CAS  Google Scholar 

  38. Reig L, Soriano L, Borrachero MV, Monzó J, Payá J. Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Constr Build Mater. 2014;63:214–22.

    Article  Google Scholar 

  39. Yip CK, Van Deventer JSJ. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci. 2003;38(18):3851–60.

    Article  CAS  Google Scholar 

  40. Yip CK, Lukey GC, Provis JL, van Deventer JSJ. Effect of calcium silicate sources on geopolymerisation. Cem Concr Res. 2008;38(4):554–64.

    Article  CAS  Google Scholar 

  41. Somna K, Bumrongjaroen W. Effect of external and internal calcium in fly ash on geopolymer formation. Dev Strateg Mater Comput Des II. 2011;32:3–16.

    Google Scholar 

  42. Khater HM. Effect of calcium on geopolymerization of aluminosilicate wastes. J Mater Civ Eng. 2012;24(1):92–101.

    Article  CAS  Google Scholar 

  43. de Vargas AS, Dal Molin DCC, Masuero ÂB, Vilela ACF, Castro-Gomes J, Gutierrez RM. Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators. Cem Concr Compos. 2014;53:341–9.

    Article  Google Scholar 

  44. ASTM Standard C618-12a. Coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM International; 2012. p. 1–5.

    Google Scholar 

  45. Arjuman P, Silbee MR, Roy DM. Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In: 10th Int Congr Chem Cem. Gothenburg, Sweden. 1997;20.

  46. Fernández-Jiménez A, Palomo A. Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 2003;82(18):2259–65.

    Article  Google Scholar 

  47. ASTM Standard C305-11. Mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. West Conshohocken: ASTM International; 2011. p. 1–3.

    Google Scholar 

  48. Montgomery DC. Chapter 11: Response surface methods and other approaches to process optimization. In: Anderson W, editor. Design and analysis of experiments. 5th ed. Hoboken: Wiley; 2001.

  49. Chindaprasirt P, Jenjirapanya S, Rattanasak U. Characterizations of FBC/PCC fly ash geopolymeric composites. Constr Build Mater. 2014;66(2):72–8.

    Article  Google Scholar 

  50. Peng Z, Vance K, Dakhane A, Marzke R, Neithalath N. Microstructural and 29Si MAS NMR spectroscopic evaluations of alkali cationic effects on fly ash activation. Cem Concr Compos. 2015;57:34–43.

    Article  CAS  Google Scholar 

  51. ASTM Standard C1679-13. Measuring hydration kinetics of hydraulic cementitious mixtures using isothermal calorimetry. West Conshohocken: ASTM International; 2014. p. 1–14.

    Google Scholar 

  52. ASTM Standard C1702-14. Measurement of heat of hydration of hydraulic cementitious materials using isothermal conduction. West Conshohocken: ASTM International; 2014. p. 1–8.

    Google Scholar 

  53. Li Q, Cai L, Fu Y, Wang H, Zou Y. Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles. Constr Build Mater. 2015;93:620–6.

    Article  Google Scholar 

  54. Lyu SJ, Wang TT, Cheng TW, Ueng TH. Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis. Constr Build Mater. 2013;43:589–97.

    Article  Google Scholar 

  55. Senff L, Hotza D, Repette WL, Ferreira VM, Labrincha JA. Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Constr Build Mater. 2010;24:1432–7.

    Article  Google Scholar 

  56. Görhan G, Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng. 2014;58:371–7.

    Article  Google Scholar 

  57. Hajimohammadi A, Provis JL, van Deventer JSJ. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci. 2011;357(2):384–92.

    Article  CAS  Google Scholar 

  58. Prasittisopin L, Sereewatthanawut I. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Front Struct Civ Eng. 2017. doi:10.1007/s11709-016-0373-7.

    Google Scholar 

  59. Dunstan ER. How does pozzolanic reaction make concrete “green”?. In: 2011 World of Coal Ash (WOCA) conference; 2011. P. 1–14.

  60. Pacewska B, Wilińska I. Comparative investigations of influence of chemical admixtures on pozzolanic and hydraulic activities of fly ash with the use of thermal analysis and infrared spectroscopy. J Therm Anal Calorim. 2014;120(1):119–27.

    Article  Google Scholar 

  61. Dombrowski K, Buchwald A, Weil M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci. 2007;42(9):3033–43.

    Article  CAS  Google Scholar 

  62. Singh NB, Kalra M, Kumar M, Rai S. Hydration of ternary cementitious system: portland cement, fly ash and silica fume. J Therm Anal Calorim. 2015;119(1):381–9.

    Article  CAS  Google Scholar 

  63. Sindhunata, Van Deventer JSJ, Lukey GC, Xu H. Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Ind Eng Chem Res. 2006;45(10):3559–68.

    Article  CAS  Google Scholar 

  64. Xu Q, Ruiz JM, Hu J, Wang K, Rasmussen RO. Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests. Thermochim Acta. 2011;512(1–2):76–85.

    Article  CAS  Google Scholar 

  65. Ravikumar D, Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim Acta. 2012;546:32–43.

    Article  CAS  Google Scholar 

  66. Lerch W, Bogue RH. Heat of hydration of Portland cement pastes. Bur Stand J Res. 1934;12(5):645.

    Article  Google Scholar 

  67. Hesse C, Goetz-Neunhoeffer F, Neubauer J. A new approach in quantitative in situ XRD of cement pastes: correlation of heat flow curves with early hydration reactions. Cem Concr Res. 2011;41(1):123–8.

    Article  CAS  Google Scholar 

  68. Rattanasak U, Chindaprasirt P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng. 2009;22(12):1073–8.

    Article  CAS  Google Scholar 

  69. Temuujin J, van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater. 2009;167(1–3):82–8.

    Article  CAS  Google Scholar 

  70. Knudsen T. The dispersion model for hydration of portland cement I. General concepts. Cem Concr Res. 1984;14(5):622–30.

    Article  CAS  Google Scholar 

  71. Knudsen T, Geiker MR. Obtaining hydration data by measurement of chemical shrinkage with an archimeter. Cem Concr Res. 1985;15(c):381–2.

    Article  CAS  Google Scholar 

  72. Hattel JH, Thorborg J. A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete. Appl Math Model. 2003;27(1):1–26.

    Article  Google Scholar 

  73. Thomas JJ. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. J Am Ceram Soc. 2012;95(10):3291–6.

    Article  CAS  Google Scholar 

  74. Fernandez-Jiménez A, Alcali-Activated FP. Slag cements: kinetic studies. Cem Concr Res. 1997;27(3):359–68.

    Article  Google Scholar 

  75. Villar-Cociña E, Morales EV, Santos SF, Savastano H, Frías M. Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem Concr Compos. 2011;33(1):68–73.

    Article  Google Scholar 

  76. Nath SK, Mukherjee S, Maitra S, Kumar S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J Therm Anal Calorim. 2017;127(3):1953–61.

    Article  CAS  Google Scholar 

  77. ASTM Standard C1074-11. Estimating concrete strength by the maturity method. West Conshohocken: ASTM International; 2014. p. 1–10.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Administrative Department of Science, Technology and Innovation of Colombia (Colciencias) for the support of this study through the National Call 567 for Doctoral Studies in Colombia. Likewise, they thank the Ministry of Economy, Industry and Competitiveness of Spain for the project grant BIA2013-47876-C2-1-P, within which a part of the tests of this study was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ary A. Hoyos-Montilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos-Montilla, A.A., Puertas, F. & Tobón, J.I. Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash. J Therm Anal Calorim 131, 2395–2410 (2018). https://doi.org/10.1007/s10973-017-6715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6715-4

Keywords

Navigation