Skip to main content

Advertisement

Log in

Synthesis of silica aerogel microspheres by a two-step acid–base sol–gel reaction with emulsification technique

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silica aerogel microspheres were synthesized by a two-step acid–base sol–gel reaction in water-in-oil emulsion systems, in which tetraethoxysilane was used as a precursor and ethanol as a solvent, and HCl and NH4OH as acid–base catalysts in two steps. The synthesis process and parameters of the emulsion process including viscosity, surfactant concentration and stirring rate have been investigated. In the emulsifying process, the viscosity of silica sol is vital to restrain the occurrence of flocculation phenomenon for forming monodisperse alcogel microspheres. The smooth silica aerogel microspheres can be formed from the silica sol with the viscosity of 107 mPa s. The resultant silica aerogel microspheres with similar surface areas above 650 m2/g, bulk densities in the range of 0.094–0.138 g/cm3, and mean diameters ranging from 40.3 to 126.1 μm can be formed by controlling these parameters of the emulsion process. The minimum of polydispersity and roundness of silica aerogel microspheres are 0.058 and 1.11, respectively. Furthermore, silica aerogel microspheres show a high capacity of uptaking bean oil, isopropanol, kerosene and n-hexane, highlighting the possibility to remove oils from water for oil spill cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.J. Lee, G.S. Kim, S.H. Hyun, J. Mater. Sci. 37, 2237–2241 (2002)

    Article  CAS  Google Scholar 

  2. J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Sol. Energ. Mater. Sol. C 89, 275–285 (2005)

    Article  CAS  Google Scholar 

  3. T. Herman, J. Day, J. Beamish, Phys. Rev. B 73, 94–100 (2006)

    Google Scholar 

  4. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243–4265 (2002)

    Article  CAS  Google Scholar 

  5. L.W. Hrubesh, J. Non-Cryst. Solids 225, 335–342 (1998)

    Article  CAS  Google Scholar 

  6. C.E. Carraher, Polym. News 30, 386–388 (2005)

    Article  CAS  Google Scholar 

  7. S. Gutzov, N. Danchova, S.I. Karakashev, M. Khristov, J. Ivanova, J. Ulbikas, J. Sol-Gel Sci. 705, 11–516 (2014)

    Google Scholar 

  8. A.P. Rao, A.V. Rao, J. Mater. Sci. 45, 51–63 (2010)

    Article  CAS  Google Scholar 

  9. Z. Tan, B. Zhao, P. Shen, S. Jiang, P. Jiang, X. Wang, S. Tan, J. Mater. Sci. 46, 7482–7488 (2011)

    Article  CAS  Google Scholar 

  10. E. Baudrin, G. Sudant, D. Larcher, B. Dunn, J.M. Tarascon, Chem. Mater. 18, 4369–4374 (2006)

    Article  CAS  Google Scholar 

  11. M. Mirzaeian, P.J. Hall, Electrochim. Acta 54, 7444–7451 (2009)

    Article  CAS  Google Scholar 

  12. B. Fang, L. Binder, J. Power Sources 163, 616–622 (2006)

    Article  CAS  Google Scholar 

  13. N. Job, F. Maillard, J. Marie, S. Berthon-Fabry, J. Pirard, M. Chatenet, J. Mater. Sci. 44, 6591–6600 (2009)

    Article  CAS  Google Scholar 

  14. L. Ren, K.S. Hui, K.N. Hui, J. Mater. Chem. A 1, 5689–5694 (2013)

    Article  CAS  Google Scholar 

  15. M. Alnaief, I. Smirnova, J. Non-Cryst. Solids 356, 1644–1649 (2010)

    Article  CAS  Google Scholar 

  16. X. Wu, X. Yang, D. Wu, R. Fu, Chem. Eng. J. 138, 47–54 (2008)

    Article  CAS  Google Scholar 

  17. J.L. Gurav, A.V. Rao, D.Y. Nadargi, H. Park, J. Mater. Sci. 45, 503–510 (2010)

    Article  CAS  Google Scholar 

  18. J.G. Reynolds, P.R. Coronado, L.W. Hrubesh, Energ. Source. 23, 831–843 (2001)

    Article  CAS  Google Scholar 

  19. J.G. Reynolds, P.R. Coronado, L.W. Hrubesh, J. Non-Cryst. Solids 292, 127–137 (2001)

    Article  CAS  Google Scholar 

  20. M. Alnaief, S. Antonyuk, C.M. Hentzschel, C.S. Leopold, S. Heinrich, I. Smirnova, Micropor. Mesopor. Mater. 160, 167–173 (2012)

    Article  CAS  Google Scholar 

  21. M. Schmidt, F. Schwertfeger, J. Non-Cryst, Solids 225, 364–368 (1998)

    CAS  Google Scholar 

  22. M. Alnaief, J. Smirnov, J. Supercrit. Fluids 55, 1118–1123 (2011)

    Article  CAS  Google Scholar 

  23. S.K. Hong, M.Y. Yoon, H.J. Hwang, J. Am. Ceram. Soc. 94, 3198–3201 (2011)

    Article  CAS  Google Scholar 

  24. Y.X. Yu, D.Q. Guo, A method to prepare silica aerogel microspheres, China patent, No. CN 103523789 A (2013)

  25. C.A. García-González, J. Uy, M. Alnaief, I. Smirnova, Carbohyd. Polym. 88, 1378–1386 (2012)

    Article  Google Scholar 

  26. G.W. Liu, B. Zhou, A. Du, J. Shen, G.M. Wu, Colloid. Surf. A 436, 763–774 (2013)

    Article  CAS  Google Scholar 

  27. M. Alnaief, M.A. Alzaitoun, C.A. García-González, I. Smirnova, Carbohyd. Polym. 84, 1011–1018 (2011)

    Article  CAS  Google Scholar 

  28. G.H. Barth et al., Modern methods of particle size analysis (Wiley, New York, 1984)

    Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science Foundation of China (51175444), the Aviation Science Foundation of China (2013ZD68009), New Century Excellent Talents in Fujian Province University (2013), the Natural Science Foundation of Fujian Province of China (2014J01206), and Xiamen Municipal Bureau of Science and Technology (3502Z20143009) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxi Yu or Jiyu Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Guo, D. & Fang, J. Synthesis of silica aerogel microspheres by a two-step acid–base sol–gel reaction with emulsification technique. J Porous Mater 22, 621–628 (2015). https://doi.org/10.1007/s10934-015-9934-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9934-8

Keywords

Navigation