Skip to main content
Log in

Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Li3PS4 is the most typical solid electrolyte for all-solid-state lithium batteries. However, to date, there are few reports on Li3PS4 solid electrolyte synthesized using the solution process. Here, β-Li3PS4 solid electrolytes were prepared via liquid-phase synthesis by dissolving Li2S and P2S5 in ethylenediamine (EDA) to form a homogeneous solution of Li3PS4. Since EDA is a basic protonic solvent, it effectively suppressed the decomposition of Li3PS4. An intermediate phase consisting of Li3PS4 and EDA was formed as a precursor after drying the EDA solution at 200 °C under vacuum. After heat treatment at temperatures above 260 °C, β-Li3PS4 was crystallized from the precursor. The ionic conductivity of the prepared β-Li3PS4 was 5.0 × 10−5 S cm−1 at 25 °C and the activation energy for conduction was 35 kJ mol−1. The obtained EDA solution of Li3PS4 will be effective in forming electrolyte-electrode interfaces with the large contact areas in all-solid-state batteries.

Highlights

  • β-Li3PS4 is prepared via liquid-phase synthesis using a ethylenediamine solution.

  • Ethylenediamine effectively suppresses the decomposition of PS43−.

  • The ionic conductivity of the prepared β-Li3PS4 is 5.0 × 10−5 S cm−1 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  2. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686. https://doi.org/10.1038/nmat3066

    Article  CAS  Google Scholar 

  3. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030. https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  4. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses. Adv Mater 17:918–921. https://doi.org/10.1002/adma.200401286

    Article  CAS  Google Scholar 

  5. Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc NHH, Matsuda A, Machida N, Hayashi A, Tatsumisago M (2021) Synthesis of sulfide solid electrolytes from Li2S and P2S5 in anisole. J Mater Chem A 9:400–405. https://doi.org/10.1039/D0TA08658D

    Article  Google Scholar 

  6. Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135:975–978. https://doi.org/10.1021/ja3110895

    Article  CAS  Google Scholar 

  7. Wang H, Hood ZD, Xia Y, Liang C (2016) Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A 4:8091–8096. https://doi.org/10.1039/C6TA02294D

    Article  CAS  Google Scholar 

  8. Phuc NHH, Totani M, Morikawa K, Muto H, Matsuda A (2016) Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ion 288:240–243. https://doi.org/10.1016/j.ssi.2015.11.032

    Article  CAS  Google Scholar 

  9. Phuc NHH, Morikawa K, Mitsuhiro T, Muto H, Matsuda A (2017) Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 23:2061–2067. https://doi.org/10.1007/s11581-017-2035-8

    Article  CAS  Google Scholar 

  10. Choi S, Lee S, Park J, Nichols WT, Shin D (2018) Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. Appl Surf Sci 444:10–14. https://doi.org/10.1039/C6TA10142A

    Article  CAS  Google Scholar 

  11. Xu RC, Wang XL, Zhang SZ, Xia Y, Xia XH, Wu JB, Tu JP (2018) Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J Power Sources 374:107–112. https://doi.org/10.1016/j.jpowsour.2017.10.093

    Article  CAS  Google Scholar 

  12. Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137:1384–1387. https://doi.org/10.1021/ja508723m

    Article  CAS  Google Scholar 

  13. Wang Y, Liu Z, Zhu X, Tang Y, Huang F (2013) Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J Power Sources 224:225–229. https://doi.org/10.1016/j.jpowsour.2012.09.097

    Article  CAS  Google Scholar 

  14. Choi YE, Park KH, Kim DH, Oh DY, Kwak HR, Lee Y-G, Jung YS (2017) Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all‐solid‐state lithium‐ion batteries. ChemSusChem 10:2605–2611. https://doi.org/10.1002/cssc.201700409

    Article  CAS  Google Scholar 

  15. Yubuchi S, Uematsu M, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M (2019) An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J Mater Chem A 7:558–566. https://doi.org/10.1039/C8TA09477B

    Article  CAS  Google Scholar 

  16. Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M (2014) Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J Power Sources 248:939–942. https://doi.org/10.1016/j.jpowsour.2013.09.117

    Article  CAS  Google Scholar 

  17. Hayashi A, Hama S, Morimoto H, Tatsumisago M, Minami T (2001) Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84:477–479. https://doi.org/10.1111/j.1151-2916.2001.tb00685.x

    Article  CAS  Google Scholar 

  18. Ozturk T, Ertas E, Mert O (2010) A berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem Rev 110:3419–3478. https://doi.org/10.1021/cr900243d

    Article  CAS  Google Scholar 

  19. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Mechanochemical synthesis of lithium ion conducting glasses and glass–ceramics in the system Li2S–P–S. Solid State Ion 176:2349–2353. https://doi.org/10.1016/j.ssi.2005.03.025

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by JST ALCA-SPRING (Grant JPMJAL1301), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Sakuda or Akitoshi Hayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, A., Kimura, T., Sakuda, A. et al. Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine. J Sol-Gel Sci Technol 101, 2–7 (2022). https://doi.org/10.1007/s10971-021-05524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05524-y

Keywords

Navigation