Skip to main content

Advertisement

Log in

One-step low-temperature synthesis of Li0.33La0.55TiO3 solid electrolytes by tape casting method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li0.33La0.55TiO3 (LLTO) is a solid Li-ion conductor with high bulk ionic conductivity. However, a high processing temperature, typically around 1300 °C, is generally required for obtaining its crystallization. In this work, LLTO was successfully synthesized at temperatures as low as 900 °C by tape casting method. Thermogravimetric analysis was carried out on the precursors for clarifying the weight loss and related phase transformations, and powder X-ray diffraction analysis was performed on the final products for verifying the crystallinity and phase purity in the low-temperature-processed LLTO electrolytes. The morphology of the synthesized LLTO powders was observed by scanning electron microscopy for understanding the microstructural evolution with increase of the sintering temperature. The ionic conductivity and activation energy of LLTO solid electrolytes were measured. A typical ionic conducting behavior with a moderate total conductivity of 4.3 × 10−6 S/cm and a quite low activation energy of 0.29 eV was obtained in the 900 °C-derived LLTO sample. When the processing temperature was raised to 1350 °C, the total ionic conductivity was further enhanced, reaching 6.13 × 10−5 S/cm. When the LLTO pellets were subject to cold isostatic pressing, the low-temperature (900 °C)-processed LLTO sample also presented a high conductivity of 2.1 × 10−5 S/cm. This work sheds light on the low-temperature synthesis of LLTO-based solid electrolytes for solid-state lithium battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Jiang Y, Zhou Y, Hu Z, Zhu X (2019) Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)(3) solid electrolytes. Chemelectrochem 6:6016. https://doi.org/10.1002/celc.201901687

    Article  CAS  Google Scholar 

  4. Le HTT, Duc Tung N, Kim Y-J, Park C-N, Park C-J (2017) A perovskite-structured aluminium-substituted lithium lanthanum titanate as a potential artificial solid-electrolyte interface for aqueous rechargeable lithium-metal-based batteries. Electrochim Acta 248:232–242. https://doi.org/10.1016/j.electacta.2017.07.110

    Article  CAS  Google Scholar 

  5. Ling M, Jiang Y, Huang Y, Zhou Y, Zhu X (2020) Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag nanoparticles. J Mater Sci 55:3750–3759. https://doi.org/10.1007/s10853-019-04180-6

    Article  CAS  Google Scholar 

  6. Jiang Y, Zhu X, Qin S, Ling M, Zhu J (2017) Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag nanoparticles. Solid State Ionics 300:73. https://doi.org/10.1016/j.ssi.2016.12.005

    Article  CAS  Google Scholar 

  7. Qin S, Zhu X, Jiang Y, Ling M, Hu Z, Zhu J (2018) Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl Phys Lett 112:113901. https://doi.org/10.1063/1.5019179

    Article  CAS  Google Scholar 

  8. Ling M, Zhu X, Jiang Y, Zhu J (2016) Comparative study of solid-state reaction and sol-gel process for synthesis of Zr-doped Li0.5La0.5TiO3 solid electrolytes. Ionics 22:2151. https://doi.org/10.1007/s11581-016-1744-8

    Article  CAS  Google Scholar 

  9. Kim KM, Shin DO, Lee Y-G (2015) Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)(3) solid electrolytes. Electrochim Acta 176:1364–1373. https://doi.org/10.1016/j.electacta.2015.07.170

    Article  CAS  Google Scholar 

  10. Takatori K, Saura K, Orum A, Kadoura H, Tani T (2016) Textured lithium lanthanum titanate polycrystals prepared by a reactive-templated grain growth method. J Eur Ceram Soc 36:551–558. https://doi.org/10.1016/j.jeurceramsoc.2015.10.012

    Article  CAS  Google Scholar 

  11. Jiang Z, Wang S, Chen X, Yang W, Yao X, Hu X, Han Q, Wang H (2019) Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv Mater 32:1906221. https://doi.org/10.1002/adma.201906221

    Article  CAS  Google Scholar 

  12. Huang Z, Zhang H, Zhang S (2017) Growth of well-developed LaOCl microplates by chloride salt-assisted method. Crystengcomm 19:2971–2976. https://doi.org/10.1039/c7ce00549k

    Article  CAS  Google Scholar 

  13. Takatori K, Kadoura H, Matsuo H, Tani T (2019) Microstructural analyses and improved ionic conductivity of La0.62Li0.16TiO3 ceramics prepared by a reactive-templated grain growth (RTGG) process. J Eur Ceram Soc 39:384. https://doi.org/10.1016/j.jeurceramsoc.2018.09.038

    Article  CAS  Google Scholar 

  14. Lineva BA, Kobylyanskaya SD, Kovalenko LL, V’Yunov OI, Belous AG (2017) Effect of impurities on the electrical properties of the defect perovskite Li0.33La0.57TiO3. Inorg Mater 53:326–332. https://doi.org/10.1134/s0020168517030074

    Article  CAS  Google Scholar 

  15. Ulusoy S, Gulen S, Aygun G, Ozyuzer L, Ozdemir M (2018) Characterization of thin film Li0.5La0.5Ti1-xAlxO3 electrolyte for all-solid-state Li-ion batteries. Solid State Ionics 324:226–232. https://doi.org/10.1016/j.ssi.2018.07.005

    Article  CAS  Google Scholar 

  16. Han J-P, Zhang B, Wang L-Y et al (2018) Li1.3Al0.3Ti1.7(PO4)3 behaving as a fast ionic conductor and bridge to boost the electrochemical performance of Li4Ti5O12. ACS Sustain Chem Eng 6:7273. https://doi.org/10.1021/acssuschemeng.7b04361

    Article  CAS  Google Scholar 

  17. Guo X, Maram PS, Navrotsky A (2017) A correlation between formation enthalpy and ionic conductivity in perovskite-structured Li3xLa0.67-xTiO3 solid lithium ion conductors. J Mater Chem A 5:12951. https://doi.org/10.1039/c7ta02434g

    Article  CAS  Google Scholar 

  18. Lakshmi D, Nalini B, Jayapandi S, Selvin PC (2020) Augmented conductivity in Li3xLa2/3-xTiO3 nanoparticles: all-solid-state Li-ion battery applications. J Mater Sci-Mater Electron 31:1343–1354. https://doi.org/10.1007/s10854-019-02648-4

  19. Romero M, Faccio R, Vazquez S, Davyt S, Mombru AW (2016) Experimental and theoretical Raman study on the structure and microstructure of Li0.30La0.57TiO3 electrolyte prepared by the sol-gel method in acetic medium. Ceram Int 42:15414. https://doi.org/10.1016/j.ceramint.2016.06.192

    Article  CAS  Google Scholar 

  20. Mei A, Jiang Q-H, Lin Y-H, Nan C-W (2009) Lithium lanthanum titanium oxide solid-state electrolyte by spark plasma sintering. J Alloys Compd 486:871–875. https://doi.org/10.1016/j.jallcom.2009.07.091

    Article  CAS  Google Scholar 

  21. Weller JM, Whetten JA, Chan CK (2018) Synthesis of fine cubic Li7La3Zr2O12 powders in molten LiCl-KCl eutectic and facile densification by reversal of Li+/H+ exchange. ACS Appl Energy Mater 1:552–560. https://doi.org/10.1021/acsaem.7b00133

  22. Dhivya L, Murugan R (2014) Effect of simultaneous substitution of Y and ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS Appl Mater Interfaces 6:17606–17615. https://doi.org/10.1021/am503731h

    Article  CAS  PubMed  Google Scholar 

  23. Harada Y, Ishigaki T, Kawai H, Kuwano J (1998) Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics 108:407. https://doi.org/10.1016/s0167-2738(98)00070-8

    Article  CAS  Google Scholar 

  24. Ibarra J, Varez A, Leon C, Santamaria J, Torres-Martinez LM, Sanz J (2000) Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03 <= x <= 0.167). Solid State Ionics 134:219–228. https://doi.org/10.1016/s0167-2738(00)00761-x

    Article  CAS  Google Scholar 

  25. Hu Z, Sheng J, Chen J et al (2018) Enhanced Li ion conductivity in Ge-doped Li0.33La0.56TiO3 perovskite solid electrolytes for all-solid-state Li-ion batteries. New J Chem 42:9074. https://doi.org/10.1039/c8nj01113c

    Article  CAS  Google Scholar 

  26. Zhao S, Zhang Y, Li G, Wang T (2010) Preparation of Li2O-doped Li3xLa2/3-xTiO3 solid electrolyte. J Chin Ceram Soc 38:50. https://doi.org/10.14062/j.issn.0454-5648.2010.01.030

    Article  CAS  Google Scholar 

  27. de Oliveira RB, Andreeta MRB, de Souza DMPF, Rodrigues JEFS, Pizani PS (2019) Innovative design for the enhancement of lithium lanthanum titanate electrolytes. Cryst Growth Des 19:4897–4901. https://doi.org/10.1021/acs.cgd.9b00825

    Article  CAS  Google Scholar 

  28. Li R, Liao K, Zhou W, Li X, Meng D, Cai R, Shao Z (2019) Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy. J Membr Sci 582:194–202. https://doi.org/10.1016/j.memsci.2019.03.074

    Article  CAS  Google Scholar 

  29. Teranishi T, Ishii Y, Hayashi H, Kishimoto A (2016) Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol-gel process. Solid State Ionics 284:1. https://doi.org/10.1016/j.ssi.2015.11.029

    Article  CAS  Google Scholar 

  30. Kwon WJ, Kim H, Jung K-N, Cho W, Kim SH, Lee JW, Park MS (2017) Enhanced Li+ conduction in perovskite Li3xLa2/3-x□1/3-2xTiO3 solid-electrolytes via microstructural engineering. J Mater Chem A 5:6257–6262. https://doi.org/10.1039/c7ta00196g

    Article  CAS  Google Scholar 

  31. Lu D-L, Zhao R-R, Wu J-L, Ma J-M, Huang M-L, Yao Y-B, Tao T, Liang B, Zhai J-W, Lu S-G (2020) Investigations on the properties of Li3xLa2/3-xTiO3 based all-solid-state supercapacitor: relationships between the capacitance, ionic conductivity, and temperature. J Eur Ceram Soc 40:2396–2403. https://doi.org/10.1016/j.jeurceramsoc.2020.02.006

    Article  CAS  Google Scholar 

  32. Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495. https://doi.org/10.1021/ja0449224

    Article  CAS  PubMed  Google Scholar 

  33. Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C (2019) High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat Energy 4:187–196. https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2013CB934700) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 169 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, Y., Zhou, Y. et al. One-step low-temperature synthesis of Li0.33La0.55TiO3 solid electrolytes by tape casting method. Ionics 27, 145–155 (2021). https://doi.org/10.1007/s11581-020-03823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03823-y

Keywords

Navigation