Skip to main content
Log in

Photocatalytic degradation of methylene blue dye using ZnWO4 catalyst prepared by a simple co-precipitation technique

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, zinc tungstate (ZnWO4) nanoparticles were synthesized by a simple co-precipitation technique without the addition of any templates and complexing agent. The X-ray diffraction study confirmed the formation of monoclinic structure ZnWO4. The annealing temperatures play a significant role on the crystallization of the samples and the crystallite size of ZnWO4 nanoparticles are varied between 30 and 65 nm. The well dispersed spherical solid shells along with nanoplatelet like morphology was obtained from the surface morphological study. The concomitant decrease in optical energy band gap value of ZnWO4 is due to the effect of crystallite size enhancement. It was observed that the crystallinity is one of the primary factors that affect the luminescence property of ZnWO4 nanoparticles. The purity and stoichiometric nature of synthesized product was confirmed by compositional analysis. The highest degradation efficiency of 87% was observed for 300 °C annealed ZnWO4 nanoparticles in the photocatalytic study by the degradation of methylene blue dye under ultraviolet light irradiation. The photocatalytic study confirmed the decomposition of methylene blue after 1 h irradiation.

Highlights

  • Pure ZnWO4 nanoparticles were successfully synthesized by co-precipitation method.

  • The well dispersed spherical solid shells along with nanoplatelet morphology were obtained.

  • The photocatalytic kinetic study confirmed decomposition of MB after 1 hr irradiation.

  • The highest degradation efficiency of 87% was observed for ZnWO4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yuvasravana R, George PP, Devanna N (2015) Int J Sci Res 6:960

    Google Scholar 

  2. Rahnamaeiyan S, Nasiri M, Alborzi A, Tabatabaei SM (2016) J Mater Sci: Mater Electron 27:1113

    CAS  Google Scholar 

  3. Gao B, Fan H, Zhang X, Song L (2012) Mater Sci Eng B 177:1126

    Article  CAS  Google Scholar 

  4. Miggli DS, Ding L, Odland MJ (2002) Catal Lett 78:23

    Article  Google Scholar 

  5. Tang JW, Zou ZG, Ye JH (2004) Catal Lett 92:53

    Article  CAS  Google Scholar 

  6. Thongtem T, Kaowphong S, Thongtm S (2008) Appl Surf Sci 254:7765

    Article  CAS  Google Scholar 

  7. Huang G, Zhang C, Zhu Y (2007) J Alloy Compd 432:269

    Article  CAS  Google Scholar 

  8. Wu Y, Zhang C, Zhang LW, Zhu YF (2007) Chem Res Chin Universities 23:465

    Article  CAS  Google Scholar 

  9. Minh NV, Hung NM (2011) Mater Sci Appl 2:988

    Google Scholar 

  10. Lu J, Liu M, Zhou S, Zhou X, Yang Y (2017) Dyes Pigments 136:1

    Article  Google Scholar 

  11. Phani AR, Passacantando M, Lozzi L, Santucci S (2000) J Mater Sci 35:4879

    Article  CAS  Google Scholar 

  12. Paliki AK, Suresh P, Sailja BBV (2016) Int J Eng Appl Sci Tech 1:188

    Google Scholar 

  13. Kalinko A, Kuzmin A (2009) J. Lumin. 129:1144

  14. Garcia Perez UM, Martinez-de la Cruz A, Peral J (2012) Electrochemica Acta 81:227

    Article  CAS  Google Scholar 

  15. Cullity BD (1978) Elements of X-ray Diffraction. Philippines: Addison-Wesley

  16. Sagadevan S, Podder J, Das I (2016) J Mater Sci: Mater Electron 27:9885

    CAS  Google Scholar 

  17. Ede SR, Ramadoss A, Nithiyanantham U, Anantharaj S, Kundu S (2015) Inorg Chem 54:3851

    Article  CAS  Google Scholar 

  18. Amouzegar Z, Naghizadeh R, Rezaie HR, Ghahari M, Aminzare M (2015) Ceram Inter 41:8352

    Article  CAS  Google Scholar 

  19. Eranjaneya H, Chandrappa GT (2016) Tran Ind, Ceram Soc 75:133

    Article  CAS  Google Scholar 

  20. Dhilip Kumar R, Karuppusamy S (2015) J Mater Sci: Mater Electron 26:3256

    CAS  Google Scholar 

  21. Hosseinpour-Mashkani SM, Maddahfar M, Sobhani-Nasab A (2016) J Elect Mater 45:3612

    Article  CAS  Google Scholar 

  22. Huang G, Zhu Y (2007) Mater Sci Eng B 139:201

    Article  CAS  Google Scholar 

  23. Dey S, Ricciardo RA, Cuthbert HL, Woodward PM (2014) Inorg Chem 53:4394

    Article  CAS  Google Scholar 

  24. Wang Y, Liping L, Li G (2017) Appl Surf Sci 393:159

    Article  CAS  Google Scholar 

  25. Sadiq MMJ, Shenoyb US, Bhat DK (2016) RSC Adv 6:61821

    Article  CAS  Google Scholar 

  26. Pereira PFS, Gouveia AF, Assis M, De Oliveira RC, Pinatti IM, Penha M, Goncalves RF, Gracia L, Andres J, Longo E (2018) Phys Chem Chem Phys 20:1923

    Article  CAS  Google Scholar 

  27. Hojamberdiev M, Zhu G, Xu Y (2010) Mater Res Bullet 45:1934

    Article  CAS  Google Scholar 

  28. Maragatha J, Rajendran S, Endo T, Karuppusamy S (2017) J Mater Sci: Mater Electron 28:5281

    CAS  Google Scholar 

  29. Govindan V, Imran H, Dharuman V, Sankaranarayanan K (2018) J Mater Sci: Mater Electron 29:17670

    CAS  Google Scholar 

  30. Hu H, Lin Y, Hu YH (2020) Catal Today 341:90

    Article  CAS  Google Scholar 

  31. Wang W, Ni Y, Lu C, Xu Z (2012) RSC Adv 2:8286

    Article  CAS  Google Scholar 

  32. Karthikeyan C, Arunachalam P, Ramachandran K, Al-Mayouf AM, Karupusamy S (2020) J Alloy Compd 828:154281

    Article  CAS  Google Scholar 

  33. Arshad M, Ehtisham-Ul-Haque S, Bilal M, Ahmad N, Ahmad A, Abbas M, Nissar J, Khan MI, Nazr A, Ghaffar A, Iqbal M (2020) Mater Res Express 7:015407

    Article  CAS  Google Scholar 

  34. Habib IY, Burhan J, Jaladi F, Lim CM, Usman A, Kumara NTRN, Tsang SCE, Mahadi AH (2020) Catalysis Today (In press) https://doi.org/10.1016/j.cattod.2020.04.008

Download references

Acknowledgements

RS and GVG gratefully acknowledges the Department of Education, Government of India for the financial support under RUSA - Phase 2.0 Scheme (Ref. No.: F. 24-51 /2014-U, Policy (TN Multi-Gen), dt. 09.10.2018). In addition, RS sincerely acknowledges the Department of Science and Technology, New Delhi, India for the financial support in general and infrastructure facilities sponsored under PURSE 2nd Phase (Ref. No.: SR/PURSE Phase 2/38 (G) dt. 21.02.2017) and FIST (SR/FST/PSI-202/2015) programmes. Further, RS acknowledges the University Grants Commission, New Delhi, India for the financial support under SAP (F.530/18/DRS-III/2015) scheme. Thanks are due to Drs. E. Kannapiran and S. Karuppusamy, Alagappa University, India for their assistance in the measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sivakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, G.V., Sivakumar, R., Sanjeeviraja, C. et al. Photocatalytic degradation of methylene blue dye using ZnWO4 catalyst prepared by a simple co-precipitation technique. J Sol-Gel Sci Technol 97, 572–580 (2021). https://doi.org/10.1007/s10971-021-05480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05480-7

Keywords

Navigation