Skip to main content
Log in

Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1−xErxFeO3-0.3Bi0.5Na0.5TiO3 solid solutions

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of Er-substituted 0.7Bi1−xErxFeO3-0.3Bi0.5Na0.5TiO3 solid solution samples are prepared by the sol–gel auto-combustion method. The objective of this study is to investigate the effect of Er-substitution on the structural, magnetic, ferroelectric, and leakage properties in the samples. Structural analysis reveals that formation of the samples changes from rhombohedral phase to tetragonal one with increasing x, showing a simultaneous appearance of the two phases near x ~ 0.025. The room temperature ferromagnetism can be significantly improved by the substitution of Bi with Er simultaneously. The x ~ 0.05 sample shows the most significant improvements in ferroelectric response with a modest ferroelectric polarization, highest activation energy, and the lowest leakage current. These results demonstrate that the substitution of Bi with a small amount of Er is beneficial for the simultaneous improvements of ferromagnetic, ferroelectric, and leakage properties in 0.7Bi1−xErxFeO3-0.3Bi0.5Na0.5TiO3 solid solution.

Highlights

  • Simultaneous appearance of the R3c and P4bm phases near x ~ 0.025.

  • Moderate value of Mr ~ 0.113 emu g−1.

  • Leakage current substantially decreased by Er-substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21

    Article  CAS  Google Scholar 

  2. Huang WJ, Yang J, Qin YF, Xiong P, Wang D, Yin LH, Tang XW, Song WH, Tong P, Zhu XB, Sun YP (2017) Room temperature multiferrocity and magnetodielectric properties of ternary (1-x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBiFeO3 (0 ≤x≤ 0.9) solid solutions. Appl Phys Lett 111:112902

    Article  Google Scholar 

  3. Ke H, Zhang L, Zhang H, Li F, Luo H, Cao L, Wang W, Wang F, Jia D, Zhou Y (2019) Electric/magnetic behaviors of Nd/Ti co-doped BiFeO3 ceramics with morphotropic phase boundary. Scr Mater 164:6–11

    Article  CAS  Google Scholar 

  4. Liu J, Liu XQ, Chen XM (2017) Ferroelectric and magnetic properties in (1−x) BiFeO3x(0.5CaTiO3–0.5SmFeO3) ceramics. J Am Ceram Soc 100:4045–4057

    Article  CAS  Google Scholar 

  5. Liu N, Liang R, Liu Z, Zhou Z, Xu C, Wang G, Dong X (2017) Large remanent polarization and enhanced magnetic properties in non-quenched Bi(Fe,Ga)O3-(Ba,Ca)(Zr,Ti)O3 multiferroic ceramics. Appl Phys Lett 110:112902

    Article  Google Scholar 

  6. Kumar A, Varshney D (2012) Crystal structure refinement of Bi(1-x)NdxFeO3 multiferroic by the Rietveld method. Ceram Int 38:3935–3942

    Article  CAS  Google Scholar 

  7. Bernardo MS, Jardiel T, Peiteado M, Caballero AC, Villegas MA (2011) Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J Eur Ceram Soc 31:3047–3053

    Article  CAS  Google Scholar 

  8. Gaikwad VM, Acharya SA (2014) Investigation on Magnetic behaviour of BiFeO3: SPIN glass view point. Adv Mater Lett 5:157–160

    Article  CAS  Google Scholar 

  9. Qian G, Zhu C, Wang L, Tian Z, Yin C, Li C, Yuan S (2017) Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 ceramics. J Electron Mater 46:6717

    Article  CAS  Google Scholar 

  10. Zhang ST, Lu MH, Wu D, Chen YF, Ming NB (2005) Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism. Appl Phys Lett 87:262907

    Article  Google Scholar 

  11. Yin LH, Yang J, Zhao BC, Liu Y, Tan SG, Tang XW, Dai JM, Song WH, Sun YP (2013) Large remnant polarization and magnetic field induced destruction of cycloidal spin structure in Bi(1−x)LaxFeO3 (0 ≤ x ≤ 0.2). J Appl Phys 113:214104

    Article  Google Scholar 

  12. Yang CH, Han YJ, Sun XS, Chen J, Qiana J, Chen LX (2018) Effects of Nd3+-substitution for Bi-site on the leakage current, ferroelectric and dielectric properties of Bi0.5Na0.5TiO3 thin films. Ceram Int 44:6330–6336

    Article  CAS  Google Scholar 

  13. Divya Lakshmi S, Banu IBS (2019) Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol-Gel Sci Technol 89:713–721

    Article  Google Scholar 

  14. Zhou H-F, Hou Z-L, Kong L-B, Jin H-B, Cao M-S, Xin Q (2013) Enhanced magnetization and improved leakage in Er-doped BiFeO3 nanoparticles. Phys Status Solidi A 210:809–813

    Article  CAS  Google Scholar 

  15. Jing C, Haiyang D, Tao L, Dewei L, Renzhong X, Huiwen X, Zhenping C (2015) Role of Mn substitution in the multiferroic properties of BiFeO3 Ceramics. J Supercond Nov Magn 28:2751

    Article  Google Scholar 

  16. Chiranjib C, Qingshan F, Xinghan C, Yang Q, Songliu Y, Canglong L (2019) Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3-0.3Ba0.8Ca0.2TiO3 solid solutions. Ceram Int https://doi.org/10.1016/j.ceramint.2019.08.250

    Article  CAS  Google Scholar 

  17. Sharma GN, Dutta S, Pandey A, Singh SK, Chatterjee R (2017) Microstructure and improved electrical properties of Ti-substituted BiFeO3 thin films. Mater Res Bull 95:223–228

    Article  CAS  Google Scholar 

  18. Bangruwa JS, Kumar S, Chauhan A, Kumar P, Verma V (2019) Modified magnetic and electrical properties of perovskite-spinel multiferroic composites. J Supercond Nov Magn 32:2559–2569

    Article  CAS  Google Scholar 

  19. Wei Y, Wang X, Zhu J, Wang X, Jia J (2013) Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J Am Ceram Soc 96:3163–3168

    CAS  Google Scholar 

  20. Fei X, Yahui T, Gang J, Wang L, Lu T, Peng G (2019) Ferroelectromagnetic pseudocubic BiFeO3-LaFeO3-PbFeO2.5: Leakage current, dielectric, and multiferroic properties at room temperature. Ceram Int https://doi.org/10.1016/j.ceramint.2019.09.053

    Article  CAS  Google Scholar 

  21. Amorín H, Correas C, Ramos P, Hungría T, Castro A, Algueró M (2012) Very high remnant polarization and phase-change electromechanical response of BiFeO3-PbTiO3 at the multiferroic morphotropic phase boundary. Appl Phys Lett 101:172908

    Article  Google Scholar 

  22. Bennett J, Bell AJ, Stevenson TJ, Comyn TP (2013) Exceptionally large piezoelectric strains in BiFeO3–(K0.5Bi0.5) TiO3–PbTiO3 ceramics. Scr Mater 68:491–494

    Article  CAS  Google Scholar 

  23. Tian ZM, Zhang YS, Yuan SL, Wu MS, Wang CH, Ma ZZ, Huo SX, Duan HN (2012) Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions. Mater Sci Eng B 177:74–78

    Article  CAS  Google Scholar 

  24. Zerihun G, Huang S, Gong G, Yuan S (2015) Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3–Bi0.5Na0.5TiO3 ceramics. Ceram Int 41:6589–6595

    Article  CAS  Google Scholar 

  25. Zhu XN, Rahman MS, Wu YJ, Liu XQ, Huang YH, Liu G, Guo R, Chen XM, Bhalla AS (2016) Enhanced ferroelectricity, piezoelectricity and ferromagnetism in (Ba0.75Ca0.25)TiO3 modified BiFeO3 multiferroic ceramics. J Alloy Compd 658:973–980

    Article  CAS  Google Scholar 

  26. Zhu CM, Wang LG, Tian ZM, Luo H, Bao DLGC, Yin Y, Huang S, Yuan SL (2016) Effect of annealing temperature on the multiferroic properties of 0.7BiFeO3–0.3Bi0.5Na0.5TiO3 solid solution prepared by sol–gel method. Ceram Int 42:3930–3937

    Article  CAS  Google Scholar 

  27. Wang LG, Zhu CM, Chen L, Li CL, Yuan SL (2017) Room-temperature magnetoelectric coupling study of multiferroic (1−x)(0.7BiFeO3-0.3Bi0.5Na0.5TiO3)-xCoFe2O4 ceramics. J Sol-Gel Sci Technol 82:184–192

    Article  CAS  Google Scholar 

  28. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276

    Article  CAS  Google Scholar 

  29. Wang D, Khesro A, Murakami S, Feteir A, Zhao Q, Reaney IM (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860

    Article  CAS  Google Scholar 

  30. Song G, Su J, Yang H, Zhang N, Chang F (2018) Modified crystal structure, dielectric properties, and magnetic phase transition temperature of Ca doped BiFeO3 ceramic. J Sol-Gel Sci Technol 85:421–430

    Article  CAS  Google Scholar 

  31. Maso N, West AR (2012) Electrical properties of Ca-Doped BiFeO3 ceramics: from p-Type semiconduction to oxide-ion conduction. Chem Mater 24:2127–2132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songliu Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, C., Fu, Q., Chen, X. et al. Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1−xErxFeO3-0.3Bi0.5Na0.5TiO3 solid solutions. J Sol-Gel Sci Technol 93, 587–595 (2020). https://doi.org/10.1007/s10971-019-05178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05178-x

Keywords

Navigation