Skip to main content
Log in

Enhanced Ferromagnetic, Ferroelectric, and Dielectric Properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Room-temperature multiferroic (1 − x)BiFeO3-x(SrTiO3-Bi0.5Na0.5TiO3) (BFO-ST-BNT) (x = 0 to 0.5) solid solutions have been prepared by the modified Pechini method, and their structural, ferromagnetic, ferroelectric, and dielectric properties systematically studied. In addition, a gradual phase transformation from rhombohedral to pseudocubic structure was observed between the compositions with x = 0.2 and x = 0.3. Compared with pure BiFeO3, significantly enhanced remanent magnetization (M r = 0.11 emu/g) was determined in the sample with x = 0.2 at room temperature. Although the ferroelectric properties exhibited overall enhancement with increasing x, relatively large remanent polarization P r (1.14 μC/cm2 at 300 K) was achieved simultaneously at the optimal composition with x = 0.2. Moreover, we measured an outstanding relative dielectric constant of over 16,700 at frequency of 10 kHz for the sample with x = 0.2, which is attributed to polarization of defect dipoles. This comprehensive enhancement of the ferromagnetic, ferroelectric, and dielectric properties indicates that BFO-ST-BNT ceramics are promising candidates for use in multiferroic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).

    Article  Google Scholar 

  2. V. Garcia and M. Bibes, Nat. Commun. 5, 4289 (2014).

    Article  Google Scholar 

  3. S. Fusil, V. Garcia, A. Barthelemy, and M. Bibes, Annu. Rev. Mater. Res. 44, 91 (2014).

    Article  Google Scholar 

  4. S.W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  5. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  6. F. Kubel and H. Schmid, Sect. B Struct. Sci. 46, 698 (1990).

    Google Scholar 

  7. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Vinhjand, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  8. S. Ahmed and S.K. Barik, Ceram. Int. 42, 5659 (2016).

    Article  Google Scholar 

  9. G.D. Achenbach, W.J. James, and R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967).

    Article  Google Scholar 

  10. P. Suresh and S. Srinath, J. Alloys Compd. 649, 843 (2015).

    Article  Google Scholar 

  11. L. Hou, K.H. Zuo, Q.B. Sun, Y.F. Xia, Z.M. Ren, X.G. Lu, Y.P. Zeng, and X. Li, J. Alloys Compd. 650, 489 (2015).

    Article  Google Scholar 

  12. S. Layek, H.C. Verma, and A. Garg, J. Alloys Compd. 651, 294 (2015).

    Article  Google Scholar 

  13. Y. Lin, L. Zhang, W. Zheng, and J. Yu, J. Mater. Sci. Mater. Electron. 26, 7351 (2015).

    Article  Google Scholar 

  14. A. Singh, V. Pandey, R.K. Kotnala, and D. Pandey, Phys. Rev. Lett. 101, 247602 (2008).

    Article  Google Scholar 

  15. F.M. Pontes, E.J.H. Lee, E.R. Leite, E. Longo, and J.A. Varela, J. Mater. Sci. 35, 4783 (2000).

    Article  Google Scholar 

  16. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, and S.L. Yuan, Solid State Sci. 13, 2196 (2011).

    Article  Google Scholar 

  17. B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, and D. Das, Solid State Sci. 12, 1063 (2010).

    Article  Google Scholar 

  18. Y. Li, N. Jiang, K.H. Lam, Y.Q. Guo, Q.J. Zheng, Q. Li, W. Zhou, Y. Wan, and D.M. Lin, J. Am. Ceram. Soc. 97, 3602 (2014).

    Article  Google Scholar 

  19. T. Setinc, M. Spreitzer, S. Kunej, J. Kovac, and D. Suvorov, J. Am. Ceram. Soc. 96, 3511 (2013).

    Article  Google Scholar 

  20. W. Krauss, D. Schutz, F.A. Mautner, A. Feteira, and K. Reichmann, J. Eur. Ceram. Soc. 30, 1827 (2010).

    Article  Google Scholar 

  21. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, and T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010).

    Article  Google Scholar 

  22. Y. Wang and C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006).

    Article  Google Scholar 

  23. N. Itoh, T. Shimura, W. Sakamoto, and T. Yogo, J. Ceram. Soc. Jpn. 117, 939 (2009).

    Article  Google Scholar 

  24. Z.M. Tian, Y.S. Zhang, S.L. Yuan, M.S. Wu, C.H. Wang, Z.Z. Ma, S.X. Huo, and H.N. Duan, Mater. Sci. Eng. B 177, 74 (2012).

    Article  Google Scholar 

  25. V. Dorcet, P. Marchet, O. Pena, and G. Trolliard, J. Magn. Magn. Mater. 321, 1762 (2009).

    Article  Google Scholar 

  26. Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, and L. Liu, J. Appl. Phys. 106, 103912 (2009).

    Article  Google Scholar 

  27. M.P. Pechini, US Patent, No. 3.330.697 (1967)

  28. W. Zheng, L. Zhang, Y. Lin, Z. Shi, F. Cao, G.L. Yuan, and J. Yu, J. Mater. Sci. Mater. Electron. 27, 12067 (2016).

    Article  Google Scholar 

  29. Z.M. Tian, S.L. Yuan, X.F. Zheng, L.C. Jia, S.X. Huo, H.N. Duan, and L. Liu, Appl. Phys. Lett. 96, 142516 (2010).

    Article  Google Scholar 

  30. S.R. Shannigrahi, A. Huang, D. Tripathy, and A.O. Adeyeye, J. Magn. Magn. Mater. 320, 2215 (2008).

    Article  Google Scholar 

  31. C. Ederer and N.A. Spldin, Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  32. I. Sosnowska, W. Schafer, W. Kockelmann, K.H. Andersen, and I.O. Troyanchuk, Appl. Phys. A Mater. Sci. Process. A 74, 1040 (2002).

    Article  Google Scholar 

  33. Y.J. Zhang, H.G. Zhang, J.H. Yin, H.W. Zhang, J.L. Chen, W.Q. Wang, and G.H. Wu, J. Magn. Magn. Mater. 322, 2251 (2010).

    Article  Google Scholar 

  34. S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, S.K. Korchagina, L.F. Rybakova, and A. Hewat, Solid State Sci. 10, 1875 (2008).

    Article  Google Scholar 

  35. S.A. Ivanov, P. Nordblad, R. Tellgren, and C. Ritter, Solid State Sci. 12, 115 (2010).

    Article  Google Scholar 

  36. W.M. Zhu, H.Y. Guo, and Z.G. Ye, Phys. Rev. B 78, 014401 (2008).

    Article  Google Scholar 

  37. M.R. Suchomel, C.I. Thomas, M. Allix, M.J. Rosseinsky, A.M. Fogg, and M.F. Thomas, Appl. Phys. Lett. 90, 112909 (2007).

    Article  Google Scholar 

  38. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, and B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010).

    Article  Google Scholar 

  39. P. Baettig, C.F. Schelle, R.L. Sar, U.V. Waghmare, and N.A. Spaldin, Chem. Mater. 17, 1376 (2005).

    Article  Google Scholar 

  40. C. Ederer and N.A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

  41. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, and N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005).

    Article  Google Scholar 

  42. R. Seshadri and N.A. Hill, Chem. Mater. 13, 2892 (2001).

    Article  Google Scholar 

  43. E. Venkata Ramana, S.V. Suryanaryana, and T. Bhima Sankaram, Solid State Sci. 12, 956 (2010).

    Article  Google Scholar 

  44. J.S. Kim, C.I. Cheon, H.J. Kang, and P.W. Jang, J. Eur. Ceram. Soc. 27, 3951 (2007).

    Article  Google Scholar 

  45. J. Lin, B. Fu, H. Lu, C. Huang, and J.W. Sheng, Ceram. Int. 39, S149 (2013).

    Article  Google Scholar 

  46. S. Huang, L.R. Shi, Z.M. Tian, S.L. Yuan, L.G. Wang, G.S. Gong, C.Y. Yin, and G. Zerihun, Ceram. Int. 41, 691 (2015).

    Article  Google Scholar 

  47. G. Illiamasn and D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  Google Scholar 

  48. M. George, S.S. Nair, K.A. Malini, P.A. Joy, and M.R. Anantharaman, J. Phys. D Appl. Phys. 40, 1593 (2007).

    Article  Google Scholar 

  49. W.M. Zhu, L.W. Su, Z.G. Ye, and W. Ren, Appl. Phys. Lett. 94, 142908 (2009).

    Article  Google Scholar 

  50. S.X. Zhang, W.J. Luo, L. Wang, and Y.W. Ma, J. Appl. Phys. 107, 054110 (2010).

    Article  Google Scholar 

  51. S. Zhang, W. Luo, D. Wong, and Y. Ma, Mater. Lett. 63, 1820 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songliu Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, G., Zhu, C., Wang, L. et al. Enhanced Ferromagnetic, Ferroelectric, and Dielectric Properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 Ceramics. J. Electron. Mater. 46, 6717–6726 (2017). https://doi.org/10.1007/s11664-017-5689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5689-0

Keywords

Navigation