Skip to main content
Log in

First principles simulation of temperature dependent electronic transition of FM-AFM phase BFO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding how temperature affects the electronic transitions of BFO is important for design of BiFeO3 (BFO)-based temperature-sensitive device. Hitherto, however, there have been only very limited reports of the quantitative simulation. Here, we used density functional theory (DFT) and two-dimensional correlation analysis (2D-CA) techniques to calculate the systematic variations in electronic transitions of BFO crystal, over a range of temperature (50~1500 K). The results suggest that the heat accumulation accelerates the O-2p4 orbital splitting, inducing the Fe3+-3d5 → Fe2+-3d5d0 charge disproportionation. The origin is observed as the temperature-dependent electron transfer process changes from threefold degeneracy to twofold degeneracy. Additionally, the crystallographic orientation (111) can be used to control the 2p-hole-induced electronic transition as O → unoccupied Fe3+-3d5, in comparison to the O → Bi-6p3 + Fe3+-3d5d0 on the orientations (001) and (101). This study offers new perspective on the improvement of BFO-based temperature-sensitive device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin YH, Jiang Q, Wang Y, Nan CW, Chen L, Yu J (2007) Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl Phys Lett 90:172507–172510

    Article  Google Scholar 

  2. Yang CH, Seidel J, Kim SY, Rossen PB, Yu P, Gajek M, Chu YH, Martin LW, Holcomb MB, He Q, Maksymovych P, Balke N, Kalinin SV, Baddorf AP, Basu SR, Scullin ML, Ramesh R (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Mater 8:485–493

    Article  CAS  Google Scholar 

  3. Selbach SM, Tybell T, Einarsrud MA, Grande T (2008) The Ferroic Phase Transitions of BiFeO3. Adv Mater 20:3692–3696

    Article  CAS  Google Scholar 

  4. Safeer CK, Chamfrault M, Allibe J, Carretero C, Deranlot C, Jacquet E, Jacquot J-F, Bibes M, Barthelemy A, Dieny B, Bea H, Baltz V (2012) Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 100:072402–072406

    Article  Google Scholar 

  5. He Q, Yeh CH, Yang JC, Bhalla GS, Liang CW, Chiu PW, Catalan G, Martin LW, Chu YH, Scott JF, Ramesh R (2012) Magnetotransport at domain walls in BiFeO3. Phys Rev Lett 108:067203–067207

    Article  CAS  Google Scholar 

  6. Balke N, Winchester B, Ren W, Chu YH, Morozovska AN, Eliseev EA, Huijben M, Vasudevan RK, Maksymovych P, Britson J, Jesse S, Kornev I, Ramesh R, Bellaiche L, Chen LQ, Kalinin SV (2012) Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Phys 8:81–88

    Article  CAS  Google Scholar 

  7. Bea H, Bibes M, Barthelemy A, Bouzehouane K, Jacquet E, Khodan A, Contour J-P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D, Viret M (2005) Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl Phys Lett 87:072508–072511

    Article  Google Scholar 

  8. Li J, Wang J, Wuttig M, Ramesh R, Wang N, Ruette B, Pyatakov AP, Zvezdin AK, Viehland D (2004) Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl Phys Lett 84:5261–5263

    Article  CAS  Google Scholar 

  9. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  10. Zheng H, Straub F, Zhan Q, Yang P-L, Hsieh W-K, Zavaliche F, Chu Y-H, Dahmen U, Ramesh R (2006) Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv Mater 18:2747–2752

    Article  CAS  Google Scholar 

  11. Siemons W, MacDougall GJ, Aczel AA, Zarestky JL, Biegalski MD, Liang S, Dagotto E, Nagler SE, Christen HM (2012) Strain dependence of transition temperatures and structural symmetry of BiFeO3 within the tetragonal-like structure. Appl Phys Lett 101:212901–212905

    Article  Google Scholar 

  12. I. C. Infante, J. Juraszek, S. Fusil, B. Dupé, P. Gemeiner, O. Diéguez, F. Pailloux, S. Jouen, E. Jacquet, G. Geneste, J. Pacaud, J. Íñiguez, L. Bellaiche, A. Barthélémy1, B. Dkhil, and M. Bibes, Multiferroic phase transition near room temperature in BiFeO3 Films, Phys Rev Lett 107 (2011) 237601-237604

  13. Fei L, Yuan J, Hu Y, Wu C, Wang J, Wang Y (2011) Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant {111}c Facets. Cryst Growth Des 11:1049–1053

    Article  CAS  Google Scholar 

  14. Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M, Barthélémy A (2012) Room remperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141–1145

    Article  CAS  Google Scholar 

  15. Wang Y, Saal JE, Wu P, Wang J, Shang S, Liu ZK, Chen LQ (2011) First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater 59:4229–4234

    Article  CAS  Google Scholar 

  16. Rana DS, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M (2009) Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3. Adv Mater 21:2881–2885

    Article  CAS  Google Scholar 

  17. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66

    Article  CAS  Google Scholar 

  18. Kundys B, Viret M, Colson D, Kundys DO (2010) Light-induced size changes in BiFeO3 crystals. Nature Mater 9:803–805

    Article  CAS  Google Scholar 

  19. Zhang JX, Li YL, Choudhury S, Chen LQ, Chu YH, Zavaliche F, Cruz MP, Ramesh R, Jia QX (2008) Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films. J Appl Phys 103:094111–094116

    Article  Google Scholar 

  20. L. Bian, Y. J. Shu, X. F. Wang, A molecular dynamics study on permeability of gases through parylene AF8 membranes, Poly Adv Tech 11 (2012)1520-1528

  21. Yang H, Wang YQ, Wang H, Jia QX (2010) Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Appl Phys Lett 96:012909–012912

    Article  Google Scholar 

  22. Wu J, Wang J (2009) Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J Appl Phys 106:104111–104115

    Article  Google Scholar 

  23. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113–014117

    Article  Google Scholar 

  24. Wang H, Zhang Y, Cai MQ, Huang H, Chan HLW (2009) First-principles study on the electronic and optical properties of BiFeO3. Solid State Commun 149:641–644

    Article  CAS  Google Scholar 

  25. Halbritter A, Makk P, Mackowiak S, Csonka S, Wawrzyniak M, Martinek J (2010) Regular atomic narrowing of Ni, Fe, and V nanowires resolved by two-dimensional correlation analysis. Phys Rev Lett 105:266805–266809

    Article  CAS  Google Scholar 

  26. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772

    Article  CAS  Google Scholar 

  27. Li S, Lin YH, Zhang BP, Wang Y, Nan CW (2010) Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J Phys Chem C 114:2903–2908

    Article  CAS  Google Scholar 

  28. Bian L, Xu JB, Song MX, Dong HL, Dong FQ (2013) Effects of halogen substitutes on the electronic and magnetic properties of BiFeO3. RSC Adv 3:25129–25135

    Article  CAS  Google Scholar 

  29. Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB (2010) Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature Mater 9:309–314

    Article  CAS  Google Scholar 

  30. Diéguez O, Íñiguez J (2011) First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3 multiferroic solid solutions. Phys Rev Lett 107:057601–057606

    Article  Google Scholar 

  31. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater 5:823–829

    Article  CAS  Google Scholar 

  32. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892

    Article  CAS  Google Scholar 

  33. Rovillain P, de Sousa R, Gallais Y, Sacuto A, Méasson MA, Colson D, Forget A, Bibes M, Barthélémy A, Cazayous M (2010) Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nature Mater 9:975–979

    Article  CAS  Google Scholar 

  34. Chen P, Xu X, Koenigsmann C, Santulli AC, Wong SS, Musfeldt JL (2010) Size-dependent infrared phonon modes and ferroelectric phase transition in BiFeO3 nanoparticles. Nano Lett 10:4526–4532

    Article  CAS  Google Scholar 

  35. Lee SK, Choi BH, Hesse D (2013) Epitaxial growth of multiferroic BiFeO3 thin films with (101) and (111) orientations on (100) Si substrates. Appl Phys Lett 102:242906–242909

    Article  Google Scholar 

  36. Ujimoto K, Yoshimura T, Ashida A, Fujimura N (2012) N., Direct piezoelectric properties of (100) and (111) BiFeO3 epitaxial thin films. Appl Phys Lett 100:102901–102903

    Article  Google Scholar 

  37. Li S, Morasch J, Klein A, Chirila C, Pintilie L, Jia L, Ellmer K, Naderer M, Reichmann K, Gröting M, Albe K (2013) Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3. Phys Rev B 88:045428–045440

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports by National Natural Science Foundation of China (41302029, 41130746, 41302027, and 41272050), International Technology Cooperation Foundation of Autonomous Region (20136009), West Light Foundation of The Chinese Academy of Sciences (RCPY201206), Key Fund Project of Sichuan Provincial (13ZA0163 and 2012JYZ002), Science and Technology Program of Urumqi (Y131020006), and Fundamental Science on Nuclear Waste and Environmental Security Laboratory (12zxnp05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Xu, Jb., Song, Mx. et al. First principles simulation of temperature dependent electronic transition of FM-AFM phase BFO. J Mol Model 21, 91 (2015). https://doi.org/10.1007/s00894-015-2583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2583-7

Keywords

Navigation