Skip to main content
Log in

Thermal-induced durable superhydrophilicity of TiO2 films with ultra-smooth surfaces

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Superhydrophilic surfaces without the need of other stimuli are usually realized by constructing a rough morphology. However, constructing rough surfaces usually require specialized equipment or complicated processing. Besides, rough surfaces can cause undesirable scattering, which strongly limits the use in optical devices. In this article, we prepared superhydrophilic TiO2 films with ultra-smooth surfaces using simple sol-gel dip-coating method. The hydrophilicity of the TiO2 films varied with different post-heat treatments. The films heat-treated at 400 °C exhibited a durable superhydrophilicity and anti-fogging property. This superhydrophilicity was attributed to the decrease of surface hydrophobic alkoxy groups and the formation of point defects, i.e., Ti3+ and oxygen vacancies, which are favourable for dissociative water adsorption. The amount of surface organic groups was influenced by autophobicity effects, further hydrolysis and decomposition of residual alkoxy groups. Additionally, the wettability behaviours of the films were also explained from the perspective of the surface energy. These results can benefit the design and manufacture of anti-fogging and self-cleaning superhydrophilic TiO2 films.

The TiO2 films exhibited intrinsic superhydrophilicity and anti-fogging property; the superhydrophilicity can maintain 30 days.

Highlights

  • The TiO2 films exhibited durability, superhydrophilicity and anti-fogging property.

  • The superhydrophilicity films with smooth surface were capable of being optical materials.

  • The mechanism of the superhydrophilicity was well studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saxena N, Naik T, Paria S (2017) J Phys Chem C 121:2428–2436

    Article  Google Scholar 

  2. Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C (2016) J Memb Sci 506:60–70

    Article  Google Scholar 

  3. Faustini M, Grenier A, Naudin G, Li R, Grosso D (2015) Nanoscale 7:19419–17425

    Article  Google Scholar 

  4. Fujima T, Futakuchi E, Tomita T, Orai Y, Sunaoshi T (2014) Langmuir 30:14494–14497

    Article  Google Scholar 

  5. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388:431–432

    Article  Google Scholar 

  6. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028–1035

    Article  Google Scholar 

  7. Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515–582

    Article  Google Scholar 

  8. Park JJ, Kim DY, Latthe SS, Lee JG, Swihart MT, Yoon SS (2013) ACS Appl Mater Interfaces 5:6155–6160

    Article  Google Scholar 

  9. Diebold U (2003) Surf Sci Rep 48:53–229

    Article  Google Scholar 

  10. Bharti B, Kumar S, Kumar R (2016) Appl Surf Sci 364:51–60

    Article  Google Scholar 

  11. Yao L, He J (2014) J Mater Chem A 2:6994–7003

    Article  Google Scholar 

  12. Wenzel RN (1949) J Phys Colloid Chem 53:1466–1467

    Article  Google Scholar 

  13. Song S, Jing L, Li S, Fu H, Luan Y (2008) Mater Lett 62:3503–3505

    Article  Google Scholar 

  14. Wang J, Wang JJ, Sun Y-L, Wang C-W (2013) J Sol-Gel Sci Technol 68:75–80

    Article  Google Scholar 

  15. Huang W, Chen Y, Yang C, Situ Y, Huang H (2015) Ceram Int 41:7573–7581

    Article  Google Scholar 

  16. Kumar R, Singh RK, Kumar M, Barthwal SK (2007) J Appl Polym Sci 104:767–772

    Article  Google Scholar 

  17. Ebert J, Pannhorst H, Küster H, Welling H (1979) Appl Opt 18:818–822

    Article  Google Scholar 

  18. Xiong Y, Lai M, Li J, Yong H, Qian H, Xu C, Zhong K, Xiao S (2015) Surf Coat Technol 265:78–82

    Article  Google Scholar 

  19. Ashkarran AA, Mohammadizadeh MR (2008) Mater Res Bull 43:522–530

    Article  Google Scholar 

  20. Zhang H, Liu Y, Wu Y, Ruan K (2015) J Nanosci Nanotechnol 15:2531–2536

    Article  Google Scholar 

  21. Livage J, Henry M, Sanchez C (1988) Progress Solid State Chem 18:259–341

    Article  Google Scholar 

  22. Vold MJ (1963) J Colloid Sci 18:684–695

    Article  Google Scholar 

  23. Tan SN, Zeng X, Fokkink B (2013) Surf Eng 16:235–238

    Article  Google Scholar 

  24. Vargas MA, Rodríguez-Páez JE (2017) J Non-Cryst Solids 459:192–205

    Article  Google Scholar 

  25. Li X, He J (2013) ACS Appl Mater Interfaces 5:5282–5290

    Article  Google Scholar 

  26. Di Mundo R, d’Agostino R, Palumbo F (2014) ACS Appl Mater Interfaces 6:17059–17066

    Article  Google Scholar 

  27. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Adv Mater 10:135–138

    Article  Google Scholar 

  28. Lu GQ, Linsebigler A, Yates JT (1994) J Phys Chem 98:11733–11738

    Article  Google Scholar 

  29. Henderson MA (1996) Surf Sci 355:151–166

    Article  Google Scholar 

  30. Kumar R, Govindarajan S, Siri Kiran Janardhana RK, Rao TN, Joshi SV, Anandan S (2016) ACS Appl Mater Interfaces 8:27642–27653

    Article  Google Scholar 

  31. Song Z, Hrbek J, Osgood R (2005) Nano Lett 5:1327–1332

    Article  Google Scholar 

  32. Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379:7–14

    Article  Google Scholar 

  33. Pouilleau J, Devilliers D, Groult H, Marcus P (1997) J Mater Sci 32:5645–5651

    Article  Google Scholar 

  34. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  Google Scholar 

  35. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  36. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) J Am Chem Soc 132:11856–11857

    Article  Google Scholar 

  37. Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi 15:627–631

    Article  Google Scholar 

  38. Tanemura S, Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N (2003) Appl Surf Sci 212–213:654–660

    Article  Google Scholar 

  39. Justicia I, Ordejon P, Canto G, Mozos JL, Fraxedas J, Battiston GA, Gerbasi R, Figueras A (2002) Adv Mater 14:1399–1402

    Article  Google Scholar 

  40. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1748

    Article  Google Scholar 

  41. Kong F, Xia Y, Jiao X, Chen D (2017) New J Chem 41:7562–7570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xia, B. & Jiang, B. Thermal-induced durable superhydrophilicity of TiO2 films with ultra-smooth surfaces. J Sol-Gel Sci Technol 87, 50–58 (2018). https://doi.org/10.1007/s10971-018-4684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4684-0

Keywords

Navigation