Skip to main content
Log in

Facile and rapid synthesis of nanoplates Mg(OH)2 and MgO via Microwave technique from metal source: structural, optical and dielectric properties

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnesium hydroxide and magnesium oxide nanostructures have been prepared by microwave/hydrothermal technique using magnesium metal in hydrogen peroxide (H2O2). The applied power of the microwave was 700 W for 10 min at 145 °C. The method produced Mg(OH)2 powder as a base material for MgO by calcinations at 550 °C for 2 h. X-ray diffraction data confirms the microwave production of Mg(OH)2 and (MgO) through the agreement with the standard JCDPS cards. Scanning electron microscopy shows nanoplates morphology for Mg(OH)2 and large-scale nanoplates with a hexagonal shape for MgO. The fundamental direct optical band gap of Mg(OH)2 equals 5.8 eV while for MgO equals 5.2 eV from the analysis of diffused reflectance data. MgO has higher dielectric constant than Mg(OH)2 at the higher frequencies. AC electrical conductivity increases with increasing the applied frequency for both materials. The microwave-hydrothermal technique shows a promising method for production of magnesium compounds from magnesium metal which can be used in different aspects such as catalysis, wastewater treatment, pharmaceutical and coated materials.

SEM images of MgO nano-plates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Chem Soc Rev 29:27–35

    Article  Google Scholar 

  2. Lv J, Qiu L, Qu B (2004) Nanotechnology 15:1576–1578

    Article  Google Scholar 

  3. Yan L, Zhuang J, Sun X, Deng Z, Li Y (2002) Mater Chem Phys 76(2):119–122

    Article  Google Scholar 

  4. Ma RZ, Bando Y (2003) Chem Phys Lett 370:770

    Article  Google Scholar 

  5. Selvama NCS, Kumara RT, Kennedyb LJ, Vijaya JJ (2011) J Alloy Compd 509:9809–9815

    Article  Google Scholar 

  6. Kumar A, Kumar J (2008) J Phys Chem Solids 69:2764

    Article  Google Scholar 

  7. Fang F, Hu B, Wang L, Lu R, Yang C (2008) Front. Chem. China 3:193–197

  8. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Chem Mater 13:435

    Article  Google Scholar 

  9. Niu H, Yang Q, Tang K, Xie Y (2006) J Nanopart Res 8:881

    Article  Google Scholar 

  10. Geng B, Zhang L, Meng G, Xie T, Peng X, Lin Y (2003) J Cryst Growth 259:291–295

    Article  Google Scholar 

  11. Shall ME, Slack W, Vann W, Kane D, Hanley D (1998) J Phys Chem 98:3067

    Article  Google Scholar 

  12. Subramania A, Kumar GV, Priya ARS, Vasudevan T (2007) Nanotechnology 18:225601

    Article  Google Scholar 

  13. Matthews JS, Just O, Johnson BO, Rees WS (2000) J Chem Vap Depos 6:129

    Article  Google Scholar 

  14. Aslan K, Geddes CD (2008) Plasmonics 3:89

    Article  Google Scholar 

  15. Al-Gaashani R, Radiman S, Al-Douri Y, Tabet N, Daud AR (2012) J Alloy Comp 521:71–76

    Article  Google Scholar 

  16. Shah MA, Qurashi A (2009) J Alloy Comp 482:548–551

    Article  Google Scholar 

  17. Li XC, Xiao W, He GH, Zheng WJ, Yu NS, Tan M (2012) Colloids Surf A 408:79–86

    Article  Google Scholar 

  18. Bhatte KD, Sawant DN, Deshmukh KM, Bhanage BM (2012) Particuology 10:384–387

    Article  Google Scholar 

  19. Callister WD (1997) Materials Science and Engineering: An Introduction. Wiley, New York

    Google Scholar 

  20. Zahran HY, Yahia IS (2015) Appl Phys 119:1397–1403

    Article  Google Scholar 

  21. Yousefi S, Ghasemi B, Tajally M, Asghari A (2017) J Alloy Compd 711:521–529

    Article  Google Scholar 

  22. Sathyamoorthy R, Mageshwari K, Mali SS, Priyadharshini S, Patil PS (2013) Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram Int 39:323–330

    Article  Google Scholar 

  23. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441–451

    Article  Google Scholar 

  24. Yakuphanoglu F, Mehrotra R, Gupta A, Munoz M (2009) J Appl Polym Sci 114:794

    Article  Google Scholar 

  25. Hafez M, Yahia IS, Taha S (2014) Spectrochim Acta A 127:521–529

    Article  Google Scholar 

  26. Bindhu MR, Umadevi M, Kavin Micheal M, Arasu MV, Abdullah Al-Dhabi N (2016) Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater Lett 166:19–22

    Article  Google Scholar 

  27. Mbarki R, Hamzaoui AH, M’nif A (2015) Dielectric properties and electrical conductivity of MgO synthesized by chemical precipitation and sol-gel method. Eur Phys J Appl Phys 69:10402

    Article  Google Scholar 

  28. Sierra-Fernandez A, Gomez-Villalba LS, Milosevic O, Fort R, Rabanal ME (2014) Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram Int 40:12285–12292

    Article  Google Scholar 

  29. Hadia NMA, Mohamed HAH (2015) Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater Sci Semicond Process 29:238–244

    Article  Google Scholar 

  30. Prashantha SC, Lakshminarasappa BN, Nagabhushana BM (2011) J Alloy Comp 509:10185–10189

    Article  Google Scholar 

  31. Brodie G, Jacob MV, Farrell P (2016) Microwave and Radio-Frequency Technologies in Agriculture: An Introduction for Agriculturalists and Engineers, Walter de Gruyter Open Ltd. Warschau/Berlin

  32. Bouzidi A, Yahia IS, El-Sadek MSA (2017) Dyes Pigments 146:66–72

    Article  Google Scholar 

  33. Huang Z, Zhou W, Tang X, Luo Fa, Zhu J (2012) Int J Appl Ceram Technol 9(2):413–420

    Article  Google Scholar 

  34. Qing YC, Zhou WC, Jia S, Luo F, Zhu DM (2010) Appl Phys A 100:1177–1181

    Article  Google Scholar 

  35. Mansour ShA, Yahia IS, Yakuphanoglu F (2010) Dyes Pigm 87:144–148

    Article  Google Scholar 

  36. Yaghmour SJ (2010) Eur Phys J Appl Phys 49:10402

    Article  Google Scholar 

  37. Mbarki R, Mnif A, Hamzaoui AH (2015) Mater Sci Semicond Process 29:300–306

    Article  Google Scholar 

  38. Jonscher AK (1977) Nature 267:673–679

    Article  Google Scholar 

  39. Shukla N, Kumar V, Dwivedi DK (2016) J Non-Oxide Glass 8:47–57

    Google Scholar 

  40. Elliot SR (1978) Solid State Comm 27:749

    Article  Google Scholar 

  41. Wahab LA, Zayed HA, Farrag AA (2012) Arab J Nucl Sci Appl 45:290–305

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to The Research Center for Advanced Material Science (RCAMS) at King Khalid University, with grant number (RCAMS-1-17-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yahia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Magnesium hydroxide and magnesium oxide nanostructures have been prepared by microwave/hydrothermal technique.

  • SEM shows nano-plates morphology for Mg(OH)2 and large-scale nano-plates with a hexagonal shape for MgO.

  • The direct optical band gap of Mg(OH)2 equals =5.012 eV while for MgO equals 4.844 eV from the analysis of diffused reflectance data.

  • MgO has higher dielectric constant than Mg(OH)2 at the higher frequencies.

  • Magnesium compounds can be used as catalysis, wastewater treatment, pharmaceutical and coated materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, H.Y., Shneouda, S.S., Yahia, I.S. et al. Facile and rapid synthesis of nanoplates Mg(OH)2 and MgO via Microwave technique from metal source: structural, optical and dielectric properties. J Sol-Gel Sci Technol 86, 104–111 (2018). https://doi.org/10.1007/s10971-018-4613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4613-2

Keywords

Navigation