Skip to main content
Log in

Structural, optical and impedance properties of SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) nanoparticles have been synthesized by microwave assisted chemical route method. The as-prepared sample was annealed at 550 °C for 1 h for the formation of SnO2 phase. The crystal structure, morphology, optical band gap of SnO2 nanoparticles were investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, Fourier transform infra-red spectroscopy. XRD result shows that the annealed SnO2 samples exhibited tetragonal crystalline structure with crystallite size ranging from 13 to 25 nm. The optical band gap value of SnO2 nano particles was calculated to be 3.78 eV. The impedance properties of SnO2 nanoparticles were analysed for different temperatures varying between 110 and 150 °C and the dielectric properties and ac conductivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Fernández-García, A. Martínez-Arias, J.C. Hanson, J.A. Rodríguez, Chem. Rev. 104, 4063 (2004)

    Article  Google Scholar 

  2. D. Varshney, K. Verma, J. Mol. Struct. 1034, 216 (2013)

    Article  Google Scholar 

  3. A. Azam, A.S. Ahmed, S.S. Habib, A.H. Naqvi, J. Alloys Compd. 523, 83 (2012)

    Article  Google Scholar 

  4. S. Das, V. Jayaraman, Prog. Mater Sci. 66, 112 (2014)

    Article  Google Scholar 

  5. O. Acarbas, E. Suvaci, A. Dogan, Ceram. Int. 33, 537 (2007)

    Article  Google Scholar 

  6. A. Chandra Bose, P. Thangadurai, S. Ramasamy, Mater. Chem. Phys. 95, 220 (2006)

    Google Scholar 

  7. S. Liu, L. Li, W. Jiang, C. Liu, W. Ding, W. Chai, Powder Technol. 245, 168 (2013)

    Article  Google Scholar 

  8. H. Zhang, Q. He, X. Zhu, D. Pan, X. Deng, Z. Jiao, CrystEngComm 14, 3169 (2012)

    Article  Google Scholar 

  9. K. Manseki, T. Sugiura, T. Yoshida, New J. Chem. 38, 598 (2014)

    Article  Google Scholar 

  10. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)

    Article  Google Scholar 

  11. S. Sain, A. Kar, A. Patra, S.K. Pradhan, CrystEngComm 16, 1079 (2014)

    Article  Google Scholar 

  12. Z. Han, N.G.F. Li, W. Zhang, H. Zhao, Y. Qian, Mater. Lett. 48, 99 (2001)

    Article  Google Scholar 

  13. F.I. Pires, E. Joanni, R. Savu, M.A. Zaghete, E. Longo, J.A. Varela, Mater. Lett. 62, 239 (2008)

    Article  Google Scholar 

  14. D.S. Wua, C.Y. Han, S.Y. Wang, N.L. Wua, I.A. Rusakova, Mater. Lett. 53, 155 (2002)

    Article  Google Scholar 

  15. T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal, R. JayaPrakash, Mater. Lett. 62, 3437 (2008)

    Article  Google Scholar 

  16. H.E. Wang, L.J. Xi, R.G. Maa, Z.G. Lu, C.Y. Chung, I. Bello, J.A. Zapien, J. Solid State Chem. 190, 104 (2012)

    Article  Google Scholar 

  17. P. Chetri, A. Choudury, Phys. E 47, 257 (2013)

    Article  Google Scholar 

  18. Y. Wang, J.Y. Lee, J. Power Sources 144, 220 (2005)

    Article  Google Scholar 

  19. B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, Boca Raton, 1998)

    Google Scholar 

  20. S. Gnanam, V. Rajendran, Dig. J. Nanomater. Bios. 5, 699 (2010)

    Google Scholar 

  21. S.A. Ahmed, Solid State Commun. 150, 2190 (2010)

    Article  Google Scholar 

  22. B. Behera, P. Nayaka, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Article  Google Scholar 

  23. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  24. A. Ullah, A. Ullah, W.S. Woo, C.W. Ahn, I.W. Kim, Ceram. Int. 40, 11335 (2014)

    Article  Google Scholar 

  25. B. Benrabah, A. Bouza, A. Kadari, M.A. Maaref, Superlattice Microstruct. 50, 591 (2011)

    Article  Google Scholar 

  26. T. Selvalakshmi, S. Sellaiyan, A. Uedono, A. Chandra, Bose. Mater. Chem. Phys. 166, 73 (2015)

    Article  Google Scholar 

  27. R. Bargougui, A. Oueslati, G. Schmerbr, C.U. Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, J. Mater. Sci.: Mater. Electron. 25, 2066 (2014)

    Google Scholar 

  28. A.E. Shalan, M. Rasly, I. Osama, M.M. Rashad, I. Ibrahim, Ceram. Int. 40, 11619 (2014)

    Article  Google Scholar 

  29. M. Slankamenac, T. Ivetic, M.V. Nikolic, N. Ivetic, M.Z. Ivanov, V.B. Pavlovi, J. Electron. Mater. 39, 447 (2010)

    Article  Google Scholar 

  30. A. Saif, Z.A.Z. Alaeddin, Z. Jamal, P. Sauli, Poopalan. Mater. Sci. 17, 186 (2011)

    Google Scholar 

  31. S.K. Rout, A. Hussianb, J.S. Leeb, I.W. Kimc, S.I. Woo, J. Alloys Compd. 477, 706 (2009)

    Article  Google Scholar 

  32. M. Ram, S. Chakrabarti, J. Alloys Compd. 462, 214 (2008)

    Article  Google Scholar 

  33. S. Lanje, S.J. Sharma, R.B. Pode, R.S. Ningthoujam, Arch. Appl. Sci. Res. 2, 127 (2010)

    Google Scholar 

  34. A.N. Papathanassiou, J. Appl. Phys. 35, L88 (2002)

    Google Scholar 

  35. S. Mehraj, M.S. Ansari, Alimuddin. Phys. E 65, 84 (2015)

    Article  Google Scholar 

  36. H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian, Curr. Appl. Phys. 11, 409 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors K. Gnanaprakasam Dhinakar and S. Meenakshi Sundar thank Dr. V. Ganesan, Dr. G.S. Okram, Dr. N.P. Lalla, Dr. D.M. Phase, Dr. U.P. Deshpande, Dr. Mukul Gupta, UGC Consortium for Scientific Research, Indore for providing TEM and FTIR and XRD measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Meenakshi Sundar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhinakar, K.G., Selvalakshmi, T., Sundar, S.M. et al. Structural, optical and impedance properties of SnO2 nanoparticles. J Mater Sci: Mater Electron 27, 5818–5824 (2016). https://doi.org/10.1007/s10854-016-4497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4497-2

Keywords

Navigation