Skip to main content
Log in

A review of responsive hybrid microgels fabricated with silver nanoparticles: synthesis, classification, characterization and applications

  • Review Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Multi-responsive microgels loaded with silver nanoparticles have gained much attention in the recent years. Such hybrid system combines responsive behavior of microgels with optical and electronic properties of silver nanoparticles. This composite system shows quick response to slight variation of temperature, pH and ionic strength of medium and concentration of certain biological substances. This review article describes the recent research progress of synthesis, classification, methods of characterization and properties of silver nanoparticles containing microgels. It also covers applications of silver nanoparticles-loaded responsive microgels in catalysis, biomedical field, nanotechnology and degradation of toxic environmental moieties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6631–6639

    Article  Google Scholar 

  2. Karg M, Hellweg T (2009) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14(6):438–450

    Article  Google Scholar 

  3. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2013) Multifunctionality in metal@ microgel colloidal nanocomposites. J Mater Chem A 1(1):20–26

    Article  Google Scholar 

  4. Karg M (2012) Multifunctional inorganic/organic hybrid microgels. Colloid Polym Sci 290(8):673–688

    Article  Google Scholar 

  5. Vinogradov SV (2006) Colloidal microgels in drug delivery applications. Curr Pharm Des 12(36):4703

    Article  Google Scholar 

  6. Thorne JB, Vine GJ, Snowden MJ (2011) Microgel applications and commercial considerations. Colloid Polym Sci 289(5–6):625–646

    Article  Google Scholar 

  7. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48(7):1815–1823

    Article  Google Scholar 

  8. Wu W, Zhou S (2010) Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Rev. doi:10.3402/nano.v1i0.5730

    Google Scholar 

  9. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142

    Article  Google Scholar 

  10. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40(3):670–678

    Article  Google Scholar 

  11. Lapeyre V, Gosse I, Chevreux S, Ravaine V (2006) Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7(12):3356–3363

    Article  Google Scholar 

  12. Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversibly changeable multiple brilliant color. Langmuir 22(8):3818–3822

    Article  Google Scholar 

  13. Welsch N, Ballauff M, Lu Y (2011) Microgels as nanoreactors: applications in catalysis. In: Pich A, Richtering W (eds) Chemical design of responsive microgels, Advances in polymer science, vol 234. Springer Berlin Heidelberg, pp 129–163

    Google Scholar 

  14. Liu Y-Y, Liu X-Y, Yang J-M, Lin D-L, Chen X, Zha L-S (2012) Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloids Surf A 393:105–110

    Article  Google Scholar 

  15. Naeem H, Farooqi ZH, Shah LA, Siddiq M (2012) Synthesis and characterization of p (NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles. J Polym Res 19(9):1–10

    Article  Google Scholar 

  16. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550

    Article  Google Scholar 

  17. Farooqi ZH, Khan HU, Shah SM, Siddiq M (2013) Stability of poly(N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem. doi:10.1016/j.arabjc.2013.07.031

    Google Scholar 

  18. Liu X, Wang X, Zha L, Lin D, Yang J, Zhou J, Zhang L (2014) Temperature-and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels. J Mater Chem C 2(35):7326–7335

    Article  Google Scholar 

  19. Zhang J, Xu S, Kumacheva E (2005) Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv Mater 17(19):2336–2340

    Article  Google Scholar 

  20. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45(5):813–816

    Article  Google Scholar 

  21. Khan A, El-Toni AM, Alrokayan S, Alsalhi M, Alhoshan M, Aldwayyan AS (2011) Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles. Colloids Surf A 377(1):356–360

    Article  Google Scholar 

  22. Chen Q, Shen X, Gao H (2006) One-step synthesis of silver-poly(4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics. Colloids Surf A 275(1):45–49

    Google Scholar 

  23. Farooqi ZH, Khan SR, Hussain T, Begum R, Ejaz K, Majeed S, Ajmal M, Kanwal F, Siddiq M (2014) Effect of crosslinker feed content on catalytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean J Chem Eng 31(9):1674–1680

    Article  Google Scholar 

  24. Liu X, Zhang C, Yang J, Lin D, Zhang L, Chen X, Zha L (2013) Silver nanoparticles loading pH responsive hybrid microgels: pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering. RSC Adv 3(10):3384–3390

    Article  Google Scholar 

  25. Khan SR, Farooqi ZH, Ajmal M, Siddiq M, Khan A (2013) Synthesis, characterization, and silver nanoparticles fabrication in N-isopropylacrylamide-based polymer microgels for rapid degradation of p-nitrophenol. J Dispers Sci Technol 34(10):1324–1333

    Article  Google Scholar 

  26. Dong Y, Ma Y, Zhai T, Shen F, Zeng Y, Fu H, Yao J (2007) Silver nanoparticles stabilized by thermoresponsive microgel particles: synthesis and evidence of an electron donor–acceptor effect. Macromol Rapid Commun 28(24):2339–2345

    Article  Google Scholar 

  27. Farooqi ZH, Khan SR, Begum R, Kanwal F, Sharif A, Ahmad E, Majeed S, Ijaz K, Ijaz A (2015) Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels. Turk J Chem 39:96–107

    Article  Google Scholar 

  28. Farooqi ZH, Siddiq M (2014) Temperature responsive poly(N-isopropylacrylamide-acrylamide-phenylboronic acid) microgels for stabilization of silver nanoparticles. J Dispers Sci Technol 36:423–429

    Article  Google Scholar 

  29. Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13(6):468–472

    Article  Google Scholar 

  30. Zhang J, Ma N, Tang F, Cui Q, He F, Li L (2012) pH-and glucose-responsive core–shell hybrid nanoparticles with controllable metal-enhanced fluorescence effects. ACS Appl Mater Interfaces 4(3):1747–1751

    Article  Google Scholar 

  31. Wu W, Zhou T, Berliner A, Banerjee P, Zhou S (2010) Smart core–shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem Mater 22(6):1966–1976

    Article  Google Scholar 

  32. Zhang JT, Wei G, Keller TF, Gallagher H, Stötzel C, Müller FA, Gottschaldt M, Schubert US, Jandt KD (2010) Responsive hybrid polymeric/metallic nanoparticles for catalytic applications. Macromol Mater Eng 295(11):1049–1057

    Article  Google Scholar 

  33. Wu W, Shen J, Li Y, Zhu H, Banerjee P, Zhou S (2012) Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels. Biomaterials 33(29):7115–7125

    Article  Google Scholar 

  34. Wu W, Mitra N, Yan EC, Zhou S (2010) Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4(8):4831–4839

    Article  Google Scholar 

  35. Ye T, Jiang X, Xu W, Zhou M, Hu Y, Wu W (2014) Tailoring the glucose-responsive volume phase transition behaviour of Ag@ poly(phenylboronic acid) hybrid microgels: from monotonous swelling to monotonous shrinking upon adding glucose at physiological pH. Polym Chem 5(7):2352–2362

    Article  Google Scholar 

  36. Tang F, Ma N, Tong L, He F, Li L (2011) Control of metal-enhanced fluorescence with pH-and thermoresponsive hybrid microgels. Langmuir 28(1):883–888

    Article  Google Scholar 

  37. Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53(23):5209–5231

    Article  Google Scholar 

  38. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126(25):7908–7914

    Article  Google Scholar 

  39. Xie L, Chen M, Wu L (2009) Fabrication and properties of hollow poly(N-isopropylacrylamide)-Ag nanocomposite spheres. J Polym Sci Part A Polym Chem 47(19):4919–4926

    Article  Google Scholar 

  40. Xia H, Zhang Y, Peng J, Fang Y, Gu Z (2006) Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures. Colloid Polym Sci 284(11):1221–1228

    Article  Google Scholar 

  41. Häntzschel N, Hund RD, Hund H, Schrinner M, Lück C, Pich A (2009) Hybrid microgels with antibacterial properties. Macromol Biosci 9(5):444–449

    Article  Google Scholar 

  42. Pich A, Karak A, Lu Y, Ghosh AK, Adler HJP (2006) Preparation of hybrid microgels functionalized by silver nanoparticles. Macromol Rapid Commun 27(5):344–350

    Article  Google Scholar 

  43. Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110(9):3930–3937

    Article  Google Scholar 

  44. Lu Y, Yu M, Drechsler M, Ballauff M (2007) Ag nanocomposite particles: preparation, characterization and application. Macromol Symp 254:97–102

    Article  Google Scholar 

  45. Karg M, Lu Y, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Hellweg T (2009) Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature-and pH-tunable plasmon resonance. Langmuir 25(5):3163–3167

    Article  Google Scholar 

  46. Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19(46):8714–8727

    Article  Google Scholar 

  47. Agrawal G, Schürings MP, van Rijn P, Pich A (2013) Formation of catalytically active gold–polymer microgel hybrids via a controlled in situ reductive process. J Mater Chem A 1(42):13244–13251

    Article  Google Scholar 

  48. Ajmal M, Farooqi ZH, Siddiq M (2013) Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity. Korean J Chem Eng 30(11):2030–2036

    Article  Google Scholar 

  49. Palioura D, Armes S, Anastasiadis S, Vamvakaki M (2007) Metal nanocrystals incorporated within pH-responsive microgel particles. Langmuir 23(10):5761–5768

    Article  Google Scholar 

  50. Das M, Sanson N, Kumacheva E (2008) Zwitterionic poly(betaine-n-isopropylacrylamide) microgels: properties and applications. Chem Mater 20(22):7157–7163

    Article  Google Scholar 

  51. Wu W, Zhou T, Zhou S (2009) Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels. Chem Mater 21(13):2851–2861

    Article  Google Scholar 

  52. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85(1):1–33

    Article  Google Scholar 

  53. Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170(2):137–149

    Article  Google Scholar 

  54. Zhang C, Li C, Chen Y, Zhang Y (2014) Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers. J Mater Sci 49(20):6872–6882

    Article  Google Scholar 

  55. Shah LA, Farooqi ZH, Naeem H, Shah SM (2013) Synthesis and characterization of poly(N-isopropylacrylamide) hybrid microgels with different cross-linker contents. J Chem Soc Pak 36(2013):1524–1531

    Google Scholar 

  56. Xiang Y, Chen D (2007) Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J 43(10):4178–4187

    Article  Google Scholar 

  57. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27(16):1346–1354

    Article  Google Scholar 

  58. Murali Mohan Y, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1):158–164

    Article  Google Scholar 

  59. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    Article  Google Scholar 

  60. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16(10):2346–2353

    Article  Google Scholar 

  61. Murthy PK, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224

    Article  Google Scholar 

  62. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1):18–21

    Article  Google Scholar 

  63. Thomas V, Yallapu MM, Sreedhar B, Bajpai S (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315(1):389–395

    Article  Google Scholar 

  64. Liu F, Wang X, Ye K-Q, Qiu L-Y, Shen J-C (2011) Layer-by-layer assembled microgel films containing silver nanoparticles as antimicrobial coatings on plastics. Chem J Chin U 4:035

    Google Scholar 

  65. Li B, Smilgies D, Price A, Huber D, Clem P, Fan H (2014) Poly(N-isopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices. ACS Nano 8:4799–4804

    Article  Google Scholar 

  66. Rajesh R, Venkatesan R (2012) Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J Mol Catal A Chem 359:88–96

    Article  Google Scholar 

  67. Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111(21):7676–7681

    Article  Google Scholar 

  68. Liu J, Wang J, Zhu Z, Li L, Guo X, Lincoln SF, Prud’homme RK (2014) Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes. Alche J 60(6):1977–1982

    Article  Google Scholar 

  69. Thomas V, Namdeo M, Murali Mohan Y, Bajpai S, Bajpai M (2007) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci Part A Pure Appl Chem 45(1):107–119

    Article  Google Scholar 

  70. Mei Y, Lu, Y, Polzer F, Ballauff M, Drechsler, M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19(5):1062–1069

    Article  Google Scholar 

  71. Wu W, Shen J, Gai Z, Hong K, Banerjee P, Zhou S (2011) Multi-functional core–shell nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery. Biomaterials 32:9876–9887

    Article  Google Scholar 

  72. Tang F, Ma N, Wang X, He F, Li L (2011) Hybrid conjugated polymer-Ag@ PNIPAM fluorescent nanoparticles with metal-enhanced fluorescence. J Mater Chem 21(42):16943–16948

    Article  Google Scholar 

  73. Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27(8):4520–4525

    Article  Google Scholar 

  74. Contreras-Cáceres R, Sierra-Martín B, Fernández-Barbero A (2011) Igor Minin (ed) Surface-enhanced Raman scattering sensors based on hybrid nanoparticles. InTech Janeza Trdine 9, 51000 Rijeka, Croatia

Download references

Acknowledgments

Authors are thankful to University of the Punjab, Lahore, Pakistan, for financial support under research grant for fiscal year  2015–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor H. Farooqi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, R., Naseem, K. & Farooqi, Z.H. A review of responsive hybrid microgels fabricated with silver nanoparticles: synthesis, classification, characterization and applications. J Sol-Gel Sci Technol 77, 497–515 (2016). https://doi.org/10.1007/s10971-015-3896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3896-9

Keywords

Navigation