Skip to main content

Advertisement

Log in

Lateral sol–gel cross-linking of polyurethane using the a grafted triethoxysilyl group

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

3-Triethoxysilylpropyl isocyanate was used to graft a triethoxysilyl group to polyurethane (PU), and the grafted triethoxysilyl groups were used to cross-link PU chains through a sol–gel process. The soft segment melting temperature and enthalpy change were not significantly altered by the sol–gel cross-linking. The sol–gel cross-linked PUs exhibited significantly increased tensile strength and better tensile strain compared to the plain linear PU: the maximum stress and strain increased to 41 MPa and 1,972 %, respectively. Control series containing tetraethyl orthosilicate, a series without cross-linking, was also prepared for comparison with the sol–gel cross-linked PU series. The control series did not exhibit the increased tensile strength shown by the sol–gel cross-linked PU series. The cyclic shape memory tests demonstrated that the shape recovery was as high as 97 %, and both shape recovery and shape retention remained high after the four repeated tests. The sol–gel cross-linked PU series exhibited enhanced low-temperature flexibility compared to the plain linear PU due to the flexible silyl cross-linking group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Polym Int 54:854

    Article  Google Scholar 

  2. Zhuohong Y, Jinlian H, Yeqiu L, Lapyan Y (2006) Mater Chem Phys 98:368

    Article  Google Scholar 

  3. Kim BK, Lee SY, Xu M (1996) Polymer 37:5781

    Article  Google Scholar 

  4. Meier-Westhues U (2008) Polyurethanes coatings adhesives and sealants. Vincentz Network, Hannover

    Google Scholar 

  5. Oertel G (1994) Polyurethane handbook, 2nd edn. Hanser Publishers, Munich

    Google Scholar 

  6. Alteheld A, Feng Y, Kelch S, Lendlein A (2005) Angew Chem Int Edit 44:1188

    Article  Google Scholar 

  7. Jingjing H, Weilin X (2010) Appl Surf Sci 256:3921

    Article  Google Scholar 

  8. Chunli H, Miao W, Xianmei C, Xiaobo H, Li L, Haomiao Z, Jian S, Jiang Y (2011) Appl Surf Sci 258:755

    Article  Google Scholar 

  9. Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Eur Polym J 45:1412

    Article  Google Scholar 

  10. Tan K, Obendorf SK (2007) J Mem Sci 289:199

    Article  Google Scholar 

  11. Chung YC, Park JS, Shin CH, Choi JW, Chun BC (2012) Macromol Res 20:66

    Article  Google Scholar 

  12. Chung YC, Jung IH, Choi JW, Chun BC (2014) Polym Bull 71:1153

    Article  Google Scholar 

  13. Chung YC, Choi JW, Jung YJ, Han S, Chun BC (2013) Fiber Polym 14:2069

    Article  Google Scholar 

  14. Chung YC, Choi JW, Lee SH, Chun BC (2011) Bull Kor Chem Soc 32:2988

    Article  Google Scholar 

  15. Freij-Larsson C, Wesslen B (1993) J Appl Polym Sci 50:345

    Article  Google Scholar 

  16. Archambault JG, John L (2004) Colloid Surf B 39:9

    Article  Google Scholar 

  17. Tan K, Obendorf SK (2006) J Mem Sci 274:150

    Article  Google Scholar 

  18. Huang J, Xu W (2010) Appl Surf Sci 256:3921

    Article  Google Scholar 

  19. Chung YC, Khiem ND, Choi JW, Chun BC (2012) J Sol–Gel Sci Technol 64:549

    Article  Google Scholar 

  20. Xu J, Shi W, Pang W (2006) Polymer 47:457

    Article  Google Scholar 

  21. Cho JW, Sul KI (2001) Polymer 42:727

    Article  Google Scholar 

  22. Kim KM, Adachi K, Chujo Y (2002) Polymer 43:1171

    Article  Google Scholar 

  23. Wer J, Wiles GL (1996) Chem Mater 8:1667

    Article  Google Scholar 

  24. Madkour TM, Mohamed SK, Barakat AM (2002) Polymer 43:533

    Article  Google Scholar 

  25. Enescu D, Hamciuc V, Ardeleanu R, Cristea M, Ioanid A, Harabagiu V, Simionescu BC (2009) Carbo Polym 76:268

    Article  Google Scholar 

  26. Chung YC, Park HS, Choi JW, Chun BC (2012) High Perform Polym 24:200

    Article  Google Scholar 

  27. Petrovic ZS, Javni I, Divjakovic VJ (1998) J Polym Sci Pol Phys 36:221

    Article  Google Scholar 

  28. Sekkar V, Gopalakrishnan S, Devi KA (2003) Eur Polym J 39:1281

    Article  Google Scholar 

  29. Sekkar V, Rama Rao M, Krishinamurthy VN, Jane SR (1996) J Appl Polym Sci 62:2317

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the R&D Center for Valuable Recycling (Global-Top Environmental Technology Development Program) funded by the Ministry of Environment (Project No.: 2014001190001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YC., Kang, K.S. & Chun, B.C. Lateral sol–gel cross-linking of polyurethane using the a grafted triethoxysilyl group. J Sol-Gel Sci Technol 72, 543–552 (2014). https://doi.org/10.1007/s10971-014-3471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3471-9

Keywords

Navigation