Skip to main content
Log in

Grafting of Triphenylmethyl Group onto Polyurethane and the Impact on the Shape Recovery and Flexibility at Extremely Low Temperature

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The bulky and rigid triphenylmethyl group was grafted onto polyurethane (PU) to reduce the molecular attractions between hard segments and to improve the mobility of the PU chain under freezing conditions. The triphenylmethyl-grafted PU exhibited improvement in the cross-link density, solution viscosity, maximum tensile stress, shape recovery at 10 °C, and low temperature flexibility compared with the plain PU. The soft segment melting was not affected by the grafted triphenylmethyl group, whereas the soft segment crystallization disappeared with the increase of the triphenylmethyl group content. The glass transition temperature (Tg) increased with the increase of the triphenylmethyl group content. The rapid increase of the tensile strength and shape recovery at 10 °C resulted from the cross-linking effect, whereas the strain at break and shape retention at -25 °C slightly decreased with the increase of the triphenylmethyl group content. The triphenylmethylgrafted PU displayed an excellent low temperature flexibility even at -50 °C due to the improved mobility of the PU chain compared to ordinary PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alves, J. F. J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. H. Gil, Eur. Polym. J., 45, 1412 (2009).

    Article  CAS  Google Scholar 

  2. H. Jingjing and X. Weilin, Appl. Surf. Sci., 256, 3921 (2010).

    Article  CAS  Google Scholar 

  3. H. Chunli, W. Miao, C. Xianmei, H. Xiaobo, L. Li, Z. Haomiao, S. Jian, and Y. Jiang, Appl. Surf. Sci., 258, 755 (2011).

    Article  CAS  Google Scholar 

  4. K. Tan and S. K. Obendorf, J. Membr. Sci., 289, 199 (2007).

    Article  CAS  Google Scholar 

  5. Y. C. Chung, H. Y. Kim, J. W. Choi, and B. C. Chun, Polym. Bull., 74, 3721 (2017).

    Article  CAS  Google Scholar 

  6. Q. Jing, W. Liu, Y. Pan, V. V. Silberschmidt, L. Li, and Z. L. Dong, Mater. Des., 85, 808 (2015).

    Article  CAS  Google Scholar 

  7. J. Choi, D. S. Moon, S. G. Ryu, B. Lee, W. B. Ying, and K. J. Lee, Polymer, 138, 146 (2018).

    Article  CAS  Google Scholar 

  8. Y. C. Chung, H. Y. Kim, J. H. Yu, and B. C. Chun, Macromol. Res., 23, 350 (2015).

    Article  CAS  Google Scholar 

  9. Y. C. Chung, N. D. Khiem, and B. C. Chun, Polym. Eng. Sci., 55, 1931 (2015).

    Article  CAS  Google Scholar 

  10. J. D. Zook, S. DeMoss, D. W. Jordan, and C. B. Rao, U. S. Patent, 6172179 B1 (2001).

    Google Scholar 

  11. A. N. Theodore and P. C. Killgoar Jr, U. S. Patent, 4853428 A (1987).

    Google Scholar 

  12. R. B. Seymour and G. B. Kauffman, J. Chem. Educ., 69, 909 (1992).

    Article  CAS  Google Scholar 

  13. H. W. Engels, H. G. Pirk, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish, Angew. Chem. Int. Edit., 52, 9422 (2013).

    Article  CAS  Google Scholar 

  14. R. J. Zdrahala and I. J. Zdrahala, J. Biomater. Appl., 14, 67 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Y. C. Chung, I. H. Jung, J. W. Choi, and B. C. Chun, Polym. Bull., 71, 1153 (2014).

    Article  CAS  Google Scholar 

  16. Y. C. Chung, H. Y. Kim, J. W. Choi, and B. C. Chun, J. Macromol. Sci. A, 54, 427 (2017).

    Article  CAS  Google Scholar 

  17. Y. Xu, J. Lu, Q. Xu, and L. Wang, Eur. Polym. J., 41, 2422 (2005).

    Article  CAS  Google Scholar 

  18. V. Plack, J. R. Goerlich, and R. Schmutzler, J. Fluorine Chem., 92, 173 (1998).

    Article  CAS  Google Scholar 

  19. A. J. Pearson and J. J. Hwang, Tetrahedron, 57, 1489 (2001).

    Article  CAS  Google Scholar 

  20. L. M. A. Mullen, P. R. Duchowicz, and E. A. Castro, Chemometr. Intell. Lab., 107, 269 (2011).

    Article  CAS  Google Scholar 

  21. M. D. Ellul, U. S. Patent, 5290886 A (1994).

    Google Scholar 

  22. A. N. Theodore and P. C. Killgoar Jr, U. S. Patent, 4853428 A (1987).

    Google Scholar 

  23. D. Nissen, H. U. Schmidt, W. Straehle, U. Schuett, and M. Marx, U. S. Patent, 4383050 A (1983).

    Google Scholar 

  24. Y. C. Chung, J. W. Choi, H. M. Chung, and B. C. Chun, B. Korean Chem. Soc., 33, 692 (2012).

    Article  CAS  Google Scholar 

  25. T. Choi, J. Weksler, A. Padsalgikar, and J. Runt, Polymer, 51, 4375 (2010).

    Article  CAS  Google Scholar 

  26. P. Russo, M. Lavorgna, F. Piscitelli, D. Acierno, and L. Di Maio, Eur. Polym. J., 49, 379 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YC., Kim, S.H., Bae, J.C. et al. Grafting of Triphenylmethyl Group onto Polyurethane and the Impact on the Shape Recovery and Flexibility at Extremely Low Temperature. Fibers Polym 19, 1157–1165 (2018). https://doi.org/10.1007/s12221-018-8082-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8082-6

Keywords

Navigation