Skip to main content
Log in

Au/M-TiO2 nanotube catalysts (M=Ce, Ga, Co, Y): preparation, characterization and their catalytic activity for CO oxidation

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The M-modified TiO2 nanotubes (NTs) (M = Ce, Ga, Co, Y, 2.0 wt%) were synthesized by combining sol-gel method with hydrothermal treatment, based on which gold was loaded by the deposition–precipitation approach. These catalysts were loaded with 1.5 wt% gold and calcined at 300 °C, and their catalytic performance was compared with Au/TiO2 NTs in CO oxidation. TEM results manifested Au/M-TiO2 NTs (M = Ce, Ga, Co, Y) had smaller gold nanoparticles than Au/TiO2 NTs. Patterns of XPS revealed the presence of the strong interaction between gold and support in Au/M-TiO2 NTs (M = Ce, Ga, Co, Y). Ce4+, Ga3+, Co2+, and Y3+ ions were present as CeO2, Ga2O3, CoO, and Y2O3 in Au/M-TiO2 NTs (M = Ce, Ga, Co, Y), respectively. Based on O2-TPD studies, Au/M-TiO2 NTs (M = Ce, Ga, Co, Y) provided new O2 adsorption sites for the adsorption and activation of oxygen in CO oxidation. M (M = Ce, Ga, Co, Y) modifying performed the positive effect on CO oxidation activity and Au/Y-TiO2 NTs showed the highest activity among these catalysts. Additionally, Au/Y-TiO2 NTs also performed excellent high-temperature stability. It was likely that the strong interaction between gold and support created the small size of gold nanoparticles, large O2 adsorption and plenty of defects, thereby enhancing the catalytic activity of Au/M-TiO2 NTs (M = Ce, Ga, Co, Y).

Highlights

  • Au/M-TiO2 NTs (M = Ce, Ga, Co, Y) were successfully prepared for the first time.

  • Au/M-TiO2 NTs (M = Ce, Ga, Co, Y) was highly efficient and sintering-resistant for CO oxidation.

  • Au/M-TiO2 NTs (M = Ce, Ga, Co, Y) possessed better activity compared with Au/TiO2 NTs.

  • Gold and support acted synergistically for the enhancement of property in Au/M-TiO2 NTs (M = Ce, Ga, Co, Y).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu RH, Gao NS, Zhen F, Zhang YY, Mei L, Zeng XW (2013) Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature. Chem Eng J 225:245–253

    Article  Google Scholar 

  2. Wang JD, Liu JK, Lu Y, Hong DJ, Yang XH (2014) Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials. Mater Res Bull 55:190–195

    Article  Google Scholar 

  3. Biabani-Ravandi A, Rezaei M (2012) Low temperature CO oxidation over Fe–Co mixed oxide nanocatalysts. Chem Eng J 184:141–146

    Article  Google Scholar 

  4. Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32

    Article  Google Scholar 

  5. Haruta M, Kaboyashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  6. Tang HL, Liu FL, Wei JK, Qiao BT, Zhao KF, Su Y, Jin CZ, Li L, Liu JY, Wang JH, Zhang T (2016) Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal–support interaction for carbon monoxide oxidation. Angew Chem Int Ed 55:10606–10611

    Article  Google Scholar 

  7. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388

    Article  Google Scholar 

  8. Parida KM, Sahu N, Mohapatra P, Scurrell MS (2010) Low temperature CO oxidation over gold supported mesoporous Fe–TiO2. J Mol Cata A 319:92–97

    Article  Google Scholar 

  9. Chang FW, Yu HY, Roselin LS, Yang HC (2005) Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts. Appl Catal A 290:138–147

    Article  Google Scholar 

  10. Hutchings GJ (2002) Gold catalysis in chemical processing. Catal Today 72:11–17

    Article  Google Scholar 

  11. Ma Z, Overbury SH, Dai S (2007) Au/M x O y /TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives. J Mol Catal A 273:186–197

    Article  Google Scholar 

  12. Chen YW, Chen HJ, Lee DS (2012) Au/Co3O4–TiO2 catalysts for preferential oxidation of CO in H2 stream. J Mol Cata A 470:363–364

    Google Scholar 

  13. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  Google Scholar 

  14. Galstyan V, Comini E, Faglia G, Sberveglieri G (2013) TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13:14813–14838

    Article  Google Scholar 

  15. Yang X, Wu LP, Du L, Li XJ (2015) Photocatalytic water splitting towards hydrogen production on gold nanoparticles (NPs) entrapped in TiO2 nanotubes. Catal Lett 145:1771–1777

    Article  Google Scholar 

  16. László B, Baán K, Varga E, Oszkó A, Erd˝ohelyi A, Kónya Z, Kiss J (2016) Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B 199:473–484

    Article  Google Scholar 

  17. Ling YH, Ren FJ, Feng JY (2016) Reverse bias voltage dependent hydrogen sensing properties on Au–TiO2 nanotubes Schottky barrier diodes. Inter J Hydrog Energy 41:7691–7698

    Article  Google Scholar 

  18. Zhu BL, Guo Q, Huang XL, Wang SR, Zhang SM, Wu SH, Huang WP (2006) Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles. J Mol Catal A 249:211–217

    Article  Google Scholar 

  19. Sandoval A, Zanella R, Klimova TE (2017) Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation. Catal Today 282:140–150

    Article  Google Scholar 

  20. Zhang P, Guo JL, Zhao P, Zhu BL, Huang WP, Shoumin Zhang (2015) Promoting effects of lanthanum on the catalytic activity of Au/TiO2 nanotubes for CO oxidation. RSC Adv 5:11989–11995

    Article  Google Scholar 

  21. Wu ZW, Zhu HQ, Qin ZF, Wang H, Huang LC, Wang JG (2010) Preferential oxidation of CO in H2-rich stream over CuO/Ce1−xTi x O2 catalysts. Appl Catal B 98:204–212

    Article  Google Scholar 

  22. Rodrı´guez-Gonza´lez V, Zanella R, Calzada LA, Gomez R (2009) Low-temperature CO oxidation and long-term stability of Au/In2O3−TiO2 catalysts. J Phys Chem C 113:8911–8917

    Article  Google Scholar 

  23. Comsup N, Panpranot J, Praserthdam P (2010) The influence of Si-modified TiO2 on the activity of Ag/TiO2 in CO oxidation. J Ind Eng Chem 16:703–707

    Article  Google Scholar 

  24. Zanella R, Giorgio S, Shin CH, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367

    Article  Google Scholar 

  25. Llorca J, Casanovas A, Domı´nhuez M, Casanova I, Angurell I, Seco M, Rossell O (2008) Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties. J Nanopart Res 10:537–542

    Article  Google Scholar 

  26. Carrot G, Valmalette JC, Plummer CJG, Scholz SM, Dutta J, Hofmann H, Hilborn JG (1998) Gold nanoparticle synthesis in graft copolymer micelles. Colloid Polym Sci 276:853–859

    Article  Google Scholar 

  27. Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. Chem Eur J 13:7771–7779

    Article  Google Scholar 

  28. Boyen HG, Ka¨stle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmu¨ller S, Hartmann C, Mo¨ller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297:1533–1536

    Article  Google Scholar 

  29. Liu HM, Yang WS, Ma Y, Cao Y, Yao JN, Zhang J, Hu TD (2003) Synthesis and characterization of titania prepared by using a photoassisted sol−gel method. Langmuir 19:3001–3005

    Article  Google Scholar 

  30. Zhao KF, Qiao BT, Zhang YJ, Wang JH (2013) The roles of hydroxyapatite and FeO x in a Au/FeO x -hydroxyapatite catalyst for CO oxidation. Chin J Catal 34:1386–1394

    Article  Google Scholar 

  31. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN, Madras G (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907

    Article  Google Scholar 

  32. Guo XL, Zhou RX (2016) A new insight into the morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas. Catal Sci Technol 6:3862–3871

    Article  Google Scholar 

  33. Ramana CV, Rubio EJ, Barraza CD, Gallardo AM, McPeak S, Kotru S, Grant JT (2014) Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. J Appl Phys 115:043508–1

    Article  Google Scholar 

  34. Barrios CE, Albiter E, Gracia y Jimenez JM, Tiznado H, Romo-Herrera J, Zanella R (2016) Photocatalytic hydrogen production over titania modified by gold - Metal (palladium, nickel and cobalt) catalysts. Int J Hydrog Generg 41:23287–23330

    Article  Google Scholar 

  35. Lei P, Dai B, Zhu JQ, Tian G, Chen XT, Wang YS, Zhu YK, Liu G, Yang L, Han JC (2015) Interfacial composition and adhesion of sputtered-Y2O3 film on ZnS substrate. Appl Surf Sci 351:119–124

    Article  Google Scholar 

  36. Domı´nguez MI, Romero-Sarria F, Centeno MA, Odriozola JA (2009) Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation. Appl Catal B 87:245–251

    Article  Google Scholar 

  37. Wang JD, Liu JK, Lu Y, Hong DJ, Yang XH (2014) Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials. Mater Res Bull 55:190–195

    Article  Google Scholar 

  38. Sahu N, Parida KM, Tripathi AK, Kamble VS (2011) Low temperature CO adsorption and oxidation over Au/rare earth-TiO2 nanocatalysts. Appl Catal A 399:110–116

    Article  Google Scholar 

  39. Liu XY, Wang AQ, Wang XD, Mou CY, Zhang T (2008) Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Comm 0:3187–3189

  40. Gopi D, Shinyjoy E, Kavitha L (2015) Influence of ionic substitution in improving the biological property of carbon nanotubes reinforced hydroxyapatite composite coating on titanium for orthopedic applications. Ceram Int 41:5454–5463

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21271110 21373120 and 21271107) and MOE Innovation Team of China (IRT13022). This work was supported by Tianjin Key Laboratory for photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Han, Q., Zhong, S. et al. Au/M-TiO2 nanotube catalysts (M=Ce, Ga, Co, Y): preparation, characterization and their catalytic activity for CO oxidation. J Sol-Gel Sci Technol 86, 699–710 (2018). https://doi.org/10.1007/s10971-018-4691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4691-1

Keywords

Navigation