Skip to main content
Log in

Electrical properties study of multi-walled carbon nanotubes/hybrid-glass nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Electrical properties of multi-walled carbon nanotubes (MWNTs)/hybrid-glass nanocomposites prepared by the fast-sol–gel reaction were investigated in light of percolation theory. A good correlation was found between the experimental results and the theory. We obtained a percolation threshold ϕ c  = 0.22 wt%, and a critical exponent of t = 1.73. These values are reported for the first time for a silica-based system. The highest conductivity measured on the MWNT/hybrid-glass nanocomposites was σ ≈ 10−3(Ω cm)−1 for 2 wt% carbon nanotube (CNT) loading. The electrical conductivity was at least 12 orders of magnitude higher than that of pure silica. Electrostatic force microscopy and conductive-mode atomic force microscopy studies demonstrated conductivity at the micro-level, which was attributed to the CNT dispersed in the matrix. It appears that the dispersion in our MWNT/hybrid-glass system yields a particularly low percolation threshold compared with that of a MWNT/silica-glass system. Materials with electrical conductivities described in this work can be exploited for anti-static coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69:1486–1498

    Article  Google Scholar 

  2. Rul S, Lefevre-schlick F, Capria E, Laurent C, Peigney A (2004) Acta Mater 52(4):1061–1067

    Article  Google Scholar 

  3. Shi S-L, Liang J (2006) J Am Ceram Soc 89(11):3533–3535

    Article  Google Scholar 

  4. Guo S, Sivakumar R, Kitazawa H, Kagawa Y (2007) J Am Ceram Soc 90:1667–1670

    Article  Google Scholar 

  5. Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press Inc, San-Diego

    Google Scholar 

  6. Pettit RB, Brinker CJ, Ashley CS (1985) Solar Cells 15:267–278

    Article  Google Scholar 

  7. Gvishi R, Pokrass M, Strum G (2009) J Eur Opt Soc Rapid Publ 4:09026

    Article  Google Scholar 

  8. Yuan XC, Yu W, Ngo N, Cheong W (2002) Opt Express 10(7):303–308

    Article  Google Scholar 

  9. Gvishi R (2009) J Sol Gel Sci Technol 50:241–253

    Article  Google Scholar 

  10. Pokrass M, Burshtein Z, Gvishi R (2010) Opt Mater 32:975–981

    Article  Google Scholar 

  11. Pokrass M, Gouzman I, Bar G, Gvishi R (2011) Opt Mater 34:341–346

    Article  Google Scholar 

  12. Pokrass M, Burshtein Z, Gvishi R, Nathan M (2012) Opt Mater Express 2:825–838

    Article  Google Scholar 

  13. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Compos Part A 41:1345–1367

    Article  Google Scholar 

  14. Gvishi R, Reisfeld R (1991) J Non Cryst Solids 128:69–76

    Article  Google Scholar 

  15. Balberg IJ (2009) Phys D Appl Phys 42:064003

    Article  Google Scholar 

  16. Balberg IJ (2012) J Appl Phys 112:066104

    Article  Google Scholar 

  17. Bug ALR, Saran SA, Grest GS, Webman I (1985) Phys Rev Lett 55(18):1886–1899

    Article  Google Scholar 

  18. Drory A, Balberg I, Berkowitz B (1995) Phys Rev E 52:4482–4494

    Article  Google Scholar 

  19. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205

    Article  Google Scholar 

  20. Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Carbon 34(6):814–816

    Article  Google Scholar 

  21. Lee Y, Kang M (2010) Mater Chem Phys 122(1):284–289

    Article  Google Scholar 

  22. Kao KC (2004) Dielectric phenomena in solids. Elsevier Academic Press, San-Diego

    Google Scholar 

  23. Berhan L, Sastry AM (2007) Phys Rev E Stat Nonlin Soft Matter Phys 75:041120

    Article  Google Scholar 

  24. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  25. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893–5899

    Article  Google Scholar 

  26. Gvishi R, Reisfeld R, Burshtein Z, Miron E (1992) SPIE Publication 1972:390–399

    Google Scholar 

  27. Gvishi R, He GS, Prasad PN, Narang U, Li M, Bright FV, Reinhardt BA, Bhatt JC, Dillard AG (1995) Appl Spectrosc 49:834–839

    Article  Google Scholar 

  28. Zhao M, Gu X, Lowther SE, Park C, Jean YC, Nguyen T (2010) Nanotechnology 21:225702

    Article  Google Scholar 

  29. Bockrath M, Markovic N, Shepard A, Tinkham M, Gurevich L, Kouwenhoven LP, Wu MW, Sohn LL (2002) Nano Lett 2:187–190

    Article  Google Scholar 

  30. Phang IY, Liu T, Zhang W-D, Schonherr H, Vancso GJ (2007) Eur Polym J 43:4136–4142

    Article  Google Scholar 

  31. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  32. Chan Z, Miao F, Xiao Z, Juan H, Hongbing Z (2007) Mater Lett 61:644–647

    Article  Google Scholar 

  33. Zheng C, Feng M, Zhen X, Huang J, Zhan H (2008) J Non Cryst Solids 354:1327–1330

    Article  Google Scholar 

  34. Thommes M (2004) In: Lu GQ, Zhao XS (eds) Nanoporous materials: science and engineering. Imperial College Press, London

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Zeev Burshtein for critical reading of the manuscript, and to Mr. Arnold Bloom for his English style screening and improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Gvishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrass, M., Azulay, D., Balberg, I. et al. Electrical properties study of multi-walled carbon nanotubes/hybrid-glass nanocomposites. J Sol-Gel Sci Technol 70, 517–527 (2014). https://doi.org/10.1007/s10971-014-3316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3316-6

Keywords

Navigation