Skip to main content
Log in

Effect of solvent on phase composition and particle morphology of lanthanum niobates prepared by polymeric complex sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lanthanum niobates were prepared by a new polymeric complex sol–gel method using Nb-citrate or -tartrate complexes in different solvent (ethanol or methanol) and calcination at 750–1,050 °C. The perovskite La1/3NbO3 and pyrochlore LaNb5O14 phases were formed after calcination at 900 and 1,050 °C from gels synthesized from ethanol and methanol solvents respectively. The very similar xerogel thermal decomposition processes were observed independently on applied solvents, where the pyrochlore monoclinic LaNbO4 and Nb2O5 phases were intermediate products at lower calcination temperatures during transformation. The particle morphologies changed from spherical 20–50 nm particles at 750 °C to granular LN particles (ethanol) or rectangular (methanol) at 1,050 °C. HRTEM images and SAED verified the coexistence of minority monoclinic LaNbO4 phase with majority phases in individual LN particles after annealing. The strong effect of alcohol solvent on phase formation was shown, while the effect of chelating agent was insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kennedy BJ, Howard CHJ, Kubota Y, Kato K (2004) J Solid State Chem 177:4552–4556

    Article  Google Scholar 

  2. Milkonis A, Macutkevic J, Grigalaitis R, Banys J, Adomvicius R, Krotkus A, Salak AN, Vyshatko NP, Khalyavin DD (2009) Ferroelectrics 109:55–60

    Article  Google Scholar 

  3. Roth S (1961) Rare earth research development. University of California, Berkeley

    Google Scholar 

  4. Iyer PN, Smith AJ (1967) Acta Crystallogr 23:740

    Article  Google Scholar 

  5. Carrillo L, Villafuerte-Castrejon ME, Gonzáles G, Sansores LE (2000) J Mater Sci 35:3047–3052

    Article  Google Scholar 

  6. Rooksby HP, White EAD, Langston SA (1965) J Am Ceram Soc 48:447–449

    Article  Google Scholar 

  7. Zhang Z, Howard CHJ, Kennedy BJ, Knight KS, Zhou Q (2007) J Solid State Chem 180:1846–1851

    Article  Google Scholar 

  8. Salak AN, Vyshatko NP, Khalyavin DD, Prokhnenko O, Ferreira VM (2008) Appl Phys Lett 93:162903-1–162903-3

    Article  Google Scholar 

  9. Garcia-Martin S, Rojo JM, Tsukamoto H, Moran E, Alario-Franco MA (1999) Solid State Ionics 116:11–18

    Article  Google Scholar 

  10. Yamamoto A, Uchiyama H, Tajima S (2004) Mater Res Bull 39:1691–1699

    Article  Google Scholar 

  11. Levin EM, McMurdie HF (1975) Am Ceram Soc 3:154

    Google Scholar 

  12. Doi Y, Harada Y, Hinatsu Y (2009) J Solid State Chem 182:709–715

    Article  Google Scholar 

  13. Vullum F, Nitsche F, Selbach SM, Grande T (2008) J Solid State Chem 181:2580–2585

    Article  Google Scholar 

  14. Mokkelbost T, Lein HL, Vullum PE, Holmestad R, Grande T, Einarsrud MA (2009) Ceram Int 35:2877–2883

    Article  Google Scholar 

  15. Syvertsen GE, Magraso A, Haugsrud R, Einarsrud MA, Grande T (2012) Int J Hydrog Energy 37:8017–8026

    Article  Google Scholar 

  16. Halevy I, Hen A, Broide A, Winterrose ML, Zalkind S, Chen Z (2011) J Modern Phys 2:323–334

    Article  Google Scholar 

  17. Ma B, Chi B, Pu J, Jian L (2013) Int J Hydrog Energy 38:4776–4781

    Article  Google Scholar 

  18. Lee HW, Park JH, Nahm S, Kim DW, Park JG (2010) Mat Res Bull 45:21–24

    Article  Google Scholar 

  19. Kakihana M, Szanicz J, Tada M (1999) Bull Korean Chem Soc 20(893–9):6

    Google Scholar 

  20. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) J Phys Chem B 110:2219–2226

    Article  Google Scholar 

  21. Hsiao YJ, Fang TH, Chang YS, Chang YH, Liu CH, Ji LW, Jywe WY (2007) J Lumin 126:866–870

    Article  Google Scholar 

  22. Mokkelbost T, Andersen O, Strom RA, Wiik K, Grande T, Einarsrud MA (2007) J Am Ceram Soc 90:3395–3400

    Article  Google Scholar 

  23. Huang Y, Wei Y, Fan L, Huang M, Lin J, Wu J (2009) Int J Hydrog Energy 34:5318–5325

    Article  Google Scholar 

  24. Pechini MP U.S. Patent 3 330 697; 1967; 69

  25. Wang N, Zhao MY, Yin ZW, Li W (2003) Mat Lett 57:4009–4013

    Article  Google Scholar 

  26. Hofmann R, Gruehn R (1990) J Inorg Gen Chem 583:223 28. Hsiao YJ, Chang YH (2007) J Am Ceram Soc 90: 2287–2290

    Google Scholar 

  27. Hsiao YJ, Fang TH (2007) J Am Ceram Soc 90:2287–2290

    Article  Google Scholar 

  28. Hsiao YJ, Fang TH, Lin SJ, Shieh JM, Ji LW (2010) J Lumin 130:1863–1865

    Article  Google Scholar 

  29. Bichara LC, Lanus HE, Ferrer EG, Gramajo MB, Silvia Brandan A (2011) Adv Phys Chem ID 347072, doi:10.1155/2011/347072

  30. Rocha RA, Muccillo ENS (2003) Mater Res Bull 38:1979–1986

    Article  Google Scholar 

  31. Li BG, Mi J, Nie FM (2010) J Chem Crystallogr 40:29–33

    Article  Google Scholar 

  32. Wei RB, Zhang YJ, Li XN, Gong HY, Jiang YZ, Zhang YJ (2013) J Sol-Gel Sci Technol 65:388–391

    Article  Google Scholar 

  33. Max JJ, Chapados C (2004) J Phys Chem A 108:3324–3337

    Article  Google Scholar 

  34. Andoulsi R, Horchani-Naifer K, Ferid (2012) Ceramica 58: 126–130

    Google Scholar 

  35. Prakash BJ, Buddhudu S (2012) Indian J Pure Appl Phys 50:320–324

    Google Scholar 

  36. Laguna MA, Sanjuán ML (2002) Ferroelectrics 272:63–68

    Article  Google Scholar 

  37. Noked O, Yakovlev S, Greenberg Y, Garbarino G, Shuker R, Avdeev M, Sterer E (2011) J Non-Cryst Solids 357:3334–3337

    Article  Google Scholar 

  38. Lee CHT, Lin YCH, Huang CHY, Su CHY, Hu CHL (2006) J Am Ceram Soc 89:3662–3668

    Article  Google Scholar 

  39. Tsunekawa S, Kasuya A, Nishina Y (1996) Mater Sci Eng A217(218):215–217

    Article  Google Scholar 

  40. Prytz O, Tafto J (2005) Acta Mater 53:297–302

    Article  Google Scholar 

  41. Jian L, Wayman CM (1995) Acta Metall Mater 43:3893–3901

    Article  Google Scholar 

  42. Tsunekawa S, Takei H (1976) J Phys Soc Jpn 40:1523–1524

    Article  Google Scholar 

  43. Tsunekawa S, Takei H (1978) Phys Status Solidi A 50(2):695–702

    Article  Google Scholar 

  44. Suwannakarn K, Lotero E, Goodwin JG (2007) Ind Eng Chem Res 46:7050–7056

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Slovak Academy of Sciences through project VEGA No. 2/0,024/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Bruncková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruncková, H., Medvecký, Ľ., Hvizdoš, P. et al. Effect of solvent on phase composition and particle morphology of lanthanum niobates prepared by polymeric complex sol–gel method. J Sol-Gel Sci Technol 69, 272–280 (2014). https://doi.org/10.1007/s10971-013-3212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3212-5

Keywords

Navigation