Skip to main content

Advertisement

Log in

Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: impregnation versus sol–gel method and effect of process conditions and promoter

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, Cu and Co doped Ni/Al2O3 nanocatalyst was synthesized via impregnation and sol–gel methods. The physiochemical properties of nanocatalyst were characterized by XRD, field emission scanning electron microscopy (FESEM), particle size distribution, BET, fourier transform infrared spectroscopy (FTIR), TG–DTA and energy dispersive X-ray (EDX) analysis. The samples were employed for CO2-reforming of methane in atmospheric pressure, temperature range from 550 to 850 °C, under various mixture of CH4/CO2 and different gas hourly space velocity. XRD patterns besides indicating the decline of the peaks intensity in sol–gel method, proved the potential of this procedure in diminishing the crystal size and preventing the NiAl2O4 spinel formation. Moreover, high surface area might derive of smaller particle size and uniform morphology of sol–gel prepared ones, confirmed by FESEM and BET analysis. TG–DTG analysis as well supported the higher surface area for sol–gel made ones, represented the proper calcination temperature (approximately 600 °C). Also, presence of the active phases and elemental composition of nanocatalysts determine via EDX analysis. Promoting the basicity and the adsorption rate of CO2, is attributed to the higher amount of OH groups for sol–gel prepared samples, proved by FTIR. Ni–Co/Al2O3 due to the synergetic effect of sol–gel method and cobalt addition depicted excellent characterization such as higher surface area, smaller particle size, supplying more stable support and enhanced morphology. Therefore, this nanocatalyst represented the best products yield (H2 = 98.21 and CO = 95.64), H2/CO close to unit (0.92–1.05) and stable conversion during 1,440 min stability test. So, Ni–Co/Al2O3 among all of the prepared nanocatalysts demonstrated the best catalytic performance and presented it as a highly efficient catalyst for dry reforming of methane. Despite of the stable yield of Ni–Cu/Al2O3, it depicted the lower catalytic activity and H2/CO ratio than the unprompted nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ruckenstein E, Hu YH (1995) Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl Catal A 133(1):149–161

    Article  CAS  Google Scholar 

  2. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41(1):1–42

    Article  CAS  Google Scholar 

  3. Tomishige K, Chen Y-g, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel–magnesia solid solution catalysts. J Catal 181(1):91–103

    Article  CAS  Google Scholar 

  4. Wei J-M, Xu B-Q, Li J-L, Cheng Z-X, Zhu Q-M (2000) Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane. Appl Catal A 196(2):L167–L172

    Article  CAS  Google Scholar 

  5. San Jose-Alonso D, Illan-Gomez MJ, Roman-Martinez MC (2013) Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane. Int J Hydrogen Energy 38(5):2230–2239

    Article  CAS  Google Scholar 

  6. Ross JRH, van Keulen ANJ, Hegarty MES, Seshan K (1996) The catalytic conversion of natural gas to useful products. Catal Today 30(1–3):193–199

    Article  CAS  Google Scholar 

  7. Xu L, Song H, Chou L (2011) Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Appl Catal B 108–109:177–190

    Google Scholar 

  8. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) Carbon dioxide reforming of methane over Ni/θ-Al2O3 catalysts: effect of Ni content. Bull Korean Chem Soc 23:1166–1168

    Article  CAS  Google Scholar 

  9. Zhang J, Wang H, Dalai AK (2008) Effects of metal content on activity and stability of Ni–Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal A 339(2):121–129

    Article  CAS  Google Scholar 

  10. Zhu J, Peng X, Yao L, Deng X, Dong H, Tong D, Hu C (2013) Synthesis gas production from CO2 reforming of methane over Ni–Ce/SiO2 catalyst: the effect of calcination ambience. Int J Hydrogen Energy 38(1):117–126

    Article  CAS  Google Scholar 

  11. Li H, Wang J (2004) Study on CO2 reforming of methane to syngas over Al2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process. Chem Eng Sci 59(22–23):4861–4867

    CAS  Google Scholar 

  12. Chen Y-g, Tomishige K, Yokoyama K, Fujimoto K (1997) Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Appl Catal A Gen 165(1–2):335–347

    Article  CAS  Google Scholar 

  13. Kumar P, Sun Y, Idem RO (2008) Comparative study of Ni-based mixed oxide catalyst for carbon dioxide reforming of methane. Energy Fuels 22(6):3575–3582

    Article  CAS  Google Scholar 

  14. Nagai M, Nakahira K, Ozawa Y, Namiki Y, Suzuki Y (2007) CO2 reforming of methane on Rh/Al2O3 catalyst. Chem Eng Sci 62(18–20):4998–5000

    CAS  Google Scholar 

  15. Nakagawa K, Anzai K, Matsui N, Ikenaga N, Suzuki T, Teng Y, Kobayashi T, Haruta M (1998) Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts. Catal Lett 51(3–4):163–167

    Article  CAS  Google Scholar 

  16. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ (2004) Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming. Appl Catal A 264(2):169–174

    Article  CAS  Google Scholar 

  17. Al-Fatesh ASA, Fakeeha AH, Abasaeed AE (2011) Effects of selected promoters on Ni/γ-Al2O3 catalyst performance in methane dry reforming. Chin J Catal 32(9–10):1604–1609

    Article  CAS  Google Scholar 

  18. Rostrupnielsen JR, Hansen JHB (1993) CO2-reforming of methane over transition metals. J Catal 144(1):38–49

    Article  CAS  Google Scholar 

  19. Cui Y, Zhang H, Xu H, Li W (2007) Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst: the effect of temperature on the reforming mechanism. Appl Catal A 318:79–88

    Article  CAS  Google Scholar 

  20. San-José-Alonso D, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A 371(1–2):54–59

    Google Scholar 

  21. Barroso-Quiroga MM, Castro-Luna AE (2010) Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane. Int J Hydrogen Energy 35(11):6052–6056

    Article  CAS  Google Scholar 

  22. Fan M-S, Abdullah AZ, Bhatia S (2010) Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies. Appl Catal B 100(1–2):365–377

    CAS  Google Scholar 

  23. Bouarab R, Akdim O, Auroux A, Cherifi O, Mirodatos C (2004) Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane. Appl Catal A 264(2):161–168

    Article  CAS  Google Scholar 

  24. Shi C, Zhang P (2012) Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts. Appl Catal B 115–116:190–200

    Google Scholar 

  25. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Appl Catal A 272(1–2):157–166

    CAS  Google Scholar 

  26. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzin A (2000) Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel. Catal Today 63(1):71–85

    Article  CAS  Google Scholar 

  27. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) CO2 reforming of methane to synthesis gas over sol–gel-made Ni/γ-Al2O3 catalysts from organometallic precursors. J Catal 194(2):424–430

    Article  CAS  Google Scholar 

  28. Zhang X, Lee CM, Mingos DM, Hayward D (2003) Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating. Catal Lett 88(3–4):129–139

    Article  CAS  Google Scholar 

  29. Wojcieszak R, Monteverdi S, Mercy M, Nowak I, Ziolek M, Bettahar MM (2004) Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sieves: characteristics and activity in the hydrogenation of benzene. Appl Catal A 268(1–2):241–253

    CAS  Google Scholar 

  30. Savva PG, Goundani K, Vakros J, Bourikas K, Fountzoula C, Vattis D, Lycourghiotis A, Kordulis C (2008) Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques. Appl Catal B 79(3):199–207

    Article  CAS  Google Scholar 

  31. Rahemi N, Haghighi M, Babaluo AA, Fallah Jafari M, Estifaee P (2013) CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma. J Nanosci Nanotechnol 13(7):4896–4908

    Article  CAS  Google Scholar 

  32. Goncalves G, Lenzi MK, Santos OAA, Jorge LMM (2006) Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol–gel method. J Non Cryst Solids 352(32–35):3697–3704

    Article  CAS  Google Scholar 

  33. Gonzalez RD, Lopez T, Gomez R (1997) Sol–gel preparation of supported metal catalysts. Catal Today 35(3):293–317

    Article  CAS  Google Scholar 

  34. Rogatis LD (2007) Design of nanostructured catalysts for H2 production and CO2 hydrogenation. University of Trieste, Trieste

    Google Scholar 

  35. Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S (2008) Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int J Hydrogen Energy 33(3):991–999

    Article  CAS  Google Scholar 

  36. Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Characterization of aerogel Ni/Al2O3 catalysts and investigation on their stability for CH4–CO2 reforming in a fluidized bed. Fuel Process Technol 90(1):113–121

    Article  CAS  Google Scholar 

  37. Ji L, Tang S, Zeng HC, Lin J, Tan KL (2001) CO2 reforming of methane to synthesis gas over sol–gel-made Co/γ-Al2O3 catalysts from organometallic precursors. Appl Catal A 207(1–2):247–255

    CAS  Google Scholar 

  38. Li X, Ai J, Li W, Li D (2010) Ni–Co bimetallic catalyst for CH4 reforming with CO2. Front Chem Eng China 4(4):476–480

    Article  CAS  Google Scholar 

  39. Takanabe K, Nagaoka K, Nariai K, Aika K-i (2005) Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J Catal 232(2):268–275

    Article  CAS  Google Scholar 

  40. Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249(2):300–310

    Article  CAS  Google Scholar 

  41. Chen H-W, Wang C-Y, Yu C-H, Tseng L-T, Liao P-H (2004) Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts. Catal Today 97(2–3):173–180

    Article  CAS  Google Scholar 

  42. Halliche D, Bouarab R, Cherifi O, Bettahar MM (1996) Carbon dioxide reforming of methane on modified Ni/γ-Al2O3 catalysts. Catal Today 29(1–4):373–377

    Article  CAS  Google Scholar 

  43. Lee J-H, Lee E-G, Joo O-S, Jung K-D (2004) Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane. Appl Catal A 269(1–2):1–6

    CAS  Google Scholar 

  44. Moradi GR, Khosravian F, Rahmanzadeh M (2012) Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming. Chin J Catal 33(4–6):797–801

    Article  CAS  Google Scholar 

  45. Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. Int J Hydrogen Energy 35(16):8494–8502

    Article  CAS  Google Scholar 

  46. Yue B, Wang X, Ai X, Yang J, Li L, Lu X, Ding W (2010) Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO–Al2O3 catalysts. Fuel Process Technol 91(9):1098–1104

    Article  CAS  Google Scholar 

  47. Alberton AL, Souza MMVM, Schmal M (2007) Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today 123(1–4):257–264

    Article  CAS  Google Scholar 

  48. Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrogen Energy 34(16):6646–6654

    Article  CAS  Google Scholar 

  49. Regalbuto J (2007) Catalyst preparation: science and engineering. Taylor and Francis Group, LLC, Chicago

    Google Scholar 

  50. Bischoff BL, Anderson MA (1995) Peptization process in the sol–gel preparation of porous anatase (TiO2). Chem Mater 7(10):1772–1778

    Article  CAS  Google Scholar 

  51. Hasin P (2007) Synthesis and characterization of NiAl2O4 spinel. Kasetsart University, Bangkok

    Google Scholar 

  52. Ding Y, Jin C, Meng Z (2000) The effects and mechanism of chemical additives on the pyrolysis evolution and microstructure of sol–gel derived Ba1−xSrxTiO3 thin films. Thin Solid Films 375(1–2):196–199

    Article  CAS  Google Scholar 

  53. Cao C, Luo M, Zhu H (1999) PLZT films prepared by sol–gel process. J Non Cryst Solids 254(1–3):146–150

    Article  CAS  Google Scholar 

  54. Yang W-D, Haile SM (2006) Influences of water content on synthesis of (Pb0.5Ba0.5)TiO3 materials using acetylacetone as chelating agent in a sol–gel process. J Eur Ceram Soc 26(15):3203–3210

    Article  CAS  Google Scholar 

  55. Aronne A, Sannino F, Bonavolont SR, Fanelli E, Mingione A, Pernice P, Spaccini R, Pirozzi D (2012) Use of a new hybrid sol–gel zirconia matrix in the removal of the herbicide MCPA: a sorption/degradation process. Environ Sci Technol 46(3):1755–1763

    Article  CAS  Google Scholar 

  56. van den Brom CR, Vogel N, Hauser CP, Goerres S, Wagner M, Landfester K, Weiss CK (2011) Interfacial activity of metal β-Diketonato complexes: in situ generation of amphiphiles by water coordination. Langmuir 27(13):8044–8053

    Article  Google Scholar 

  57. Lemonnier S, Grandjean S, Robisson A-C, Jolivet J-P (2010) Synthesis of zirconia sol stabilized by trivalent cations (yttrium and neodymium or americium): a precursor for Am-bearing cubic stabilized zirconia. Dalton Trans 39(9):2254–2262

    Article  CAS  Google Scholar 

  58. Kessler V, Spijksma G, Seisenbaeva G, Hykansson S, Blank DA, Bouwmeester HM (2006) New insight in the role of modifying ligands in the sol–gel processing of metal alkoxide precursors: a possibility to approach new classes of materials. J Sol Gel Sci Technol 40(2–3):163–179

    Article  CAS  Google Scholar 

  59. Wang X, Pan X, Lin R, Kou S, Zou W, Ma J-X (2010) Steam reforming of dimethyl ether over Cu–Ni/γ-Al2O3 bi-functional catalyst prepared by deposition–precipitation method. Int J Hydrogen Energy 35(9):4060–4068

    Article  CAS  Google Scholar 

  60. Kawabata T, Matsuoka H, Shishido T, Li D, Tian Y, Sano T, Takehira K (2006) Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation. Appl Catal A 308:82–90

    Article  CAS  Google Scholar 

  61. Ryczkowski J (2001) IR spectroscopy in catalysis. Catal Today 68(4):263–381

    Article  CAS  Google Scholar 

  62. Debasis D, Panchanan P (2004) Particle size and comparison of soft-chemically prepared nickel and copper aluminate spinels. Paper presented at the international symposium of research students on materials science and engineering, Chennai, India

  63. Djelloul A, Aida MS, Bougdira J (2010) Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline alumina substrates by ultrasonic spray pyrolysis. J Lumin 130(11):2113–2117

    Article  CAS  Google Scholar 

  64. Seo JG, Youn MH, Jung JC, Cho KM, Park S, Song IK (2008) Preparation of Ni/Al2O3–ZrO2 catalysts and their application to hydrogen production by steam reforming of LNG: effect of ZrO2 content grafted on Al2O3. Catal Today 138(3–4):130–134

    Article  CAS  Google Scholar 

  65. Abbasi Z, Haghighi M, Fatehifar E, Saedy S (2011) Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. J Hazard Mater 186(2–3):1445–1454

    Article  CAS  Google Scholar 

  66. Wang S, Gu F, Li C, Cao H (2007) Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures. J Cryst Growth 307(2):386–394

    Article  CAS  Google Scholar 

  67. Goula MA, Lemonidou AA, Efstathiou AM (1996) Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO–Al2O3 catalysts studied by various transient techniques. J Catal 161(2):626–640

    Article  CAS  Google Scholar 

  68. Brockner W, Ehrhardt C, Gjikaj M (2007) Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. Thermochim Acta 456(1):64–68

    Article  CAS  Google Scholar 

  69. Ehrhardt C, Gjikaj M, Brockner W (2005) Thermal decomposition of cobalt nitrato compounds: preparation of anhydrous cobalt (II) nitrate and its characterization by Infrared and Raman spectra. Thermochim Acta 432(1):36–40

    Article  CAS  Google Scholar 

  70. Morozov IV, Znamenkov KO, Korenev YM, Shlyakhtin OA (2003) Thermal decomposition of Cu(NO3)2·3H2O at reduced pressures. Thermochim Acta 403(2):173–179

    Article  CAS  Google Scholar 

  71. Sarkar D, Adak S, Mitra NK (2007) Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: powder synthesis and transformation behavior during fracture. Compos A Appl Sci Manuf 38(1):124–131

    Article  Google Scholar 

  72. Haghighi M, Sun Z-q, Wu J-h, Bromly J, Wee HL, Ng E, Wang Y, Zhang D-k (2007) On the reaction mechanism of CO2 reforming of methane over a bed of coal char. Proc Combust Inst 31(2):1983–1990

    Article  Google Scholar 

  73. Nikoo MK, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 92(3):678–691

    Article  CAS  Google Scholar 

  74. Zanganeh R, Rezaei M, Zamaniyan A (2013) Dry reforming of methane to synthesis gas on NiO–MgO nanocrystalline solid solution catalysts. Int J Hydrogen Energy 38(7):3012–3018

    Article  CAS  Google Scholar 

  75. Coq B, Tichit D, Ribet S (2000) Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles: hydrogenation of acetonitrile. J Catal 189(1):117–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Sahand University of Technology for the financial support of the research and Iran Nanotechnology Initiative Council for complementary financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haghighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjadi, S.M., Haghighi, M., Eslami, A.A. et al. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: impregnation versus sol–gel method and effect of process conditions and promoter. J Sol-Gel Sci Technol 67, 601–617 (2013). https://doi.org/10.1007/s10971-013-3120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3120-8

Keywords

Navigation