Skip to main content
Log in

New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials

  • Chemistry and Characterisation
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper summarizes recent literature data and presents new experimental data on the mechanisms of chemical modification, hydrolysis and polycondensation of the alkoxides and demonstrates possibilities to approach new classes of materials, exploiting these mechanisms. Low reactivity of silicon alkoxides is improved by either basic catalysis exploiting an SN2 mechanism or acidic catalysis facilitating a proton-assisted SN1 mechanism as well as by modification with chelating ligands. Metal alkoxides are much stronger Lewis bases compared to silicon alkoxides and the acidity of water is strong enough to achieve their rapid hydrolysis via proton-assisted SN1 pathway even in the absence of additional catalysts. Introduction of the modifying chelating ligands is leading generally to increased charge distribution in the precursor molecules. Modifying chelating ligands are also appreciably smaller than the alkoxide ligands they replace. The modification with chelating ligands is thus facilitating the kinetics of hydrolysis and polycondensation. The size and shape of the primary particles formed in sol-gel treatment of metal alkoxides are defined not by kinetic factors in their hydrolysis and polycondensation but by the interactions on the phase boundary, which is in its turn directed by the ligand properties. The products of the fast hydrolysis and condensation sequence consist of micelles templated by self-assembly of ligands (mainly oxo-species). This concept provides explanations for commonly observed material properties and allows for the development of new strategies for the preparation of materials. We discuss the formation of inverted micelles, obtained by the appropriate choice of solvents, which allows for the formation of hollow spheres. The modifying β-diketonate ligands act as the surfactant and form an interface between the hollow sphere and the solvent. Retention of ligands inside the gel particles is possible only if ligands possessing both chelating and bridging properties are applied. Application of such ligands, for example, diethanolamine, permits to prepare new transition metal oxide based microporous membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vacassy RJ, Guizard C, Palmeri J, Cot L (1998) Nanostruct Mater 10:77

    Article  CAS  Google Scholar 

  2. Xia CR, Cao HQ, Wang H, Yang PH, Meng GY, Peng DK (1999) J Membr Sci 162:181

    Article  CAS  Google Scholar 

  3. Kurosawa H, Yan YT, Miura N, Yamazoe N (1995) Solid State Ionics 338:79

    Google Scholar 

  4. Riegel J, Neumann H, Wiedemann H-M (2002) Solid State Ionics 783:152–153

    Google Scholar 

  5. Miura N, Nakatou M, Zhuiykov S (2003) Sensor Actuat B-Chem 221:93

    Google Scholar 

  6. Li YW, He DH, Cheng ZX, Su CL, Li JR, Zhu QM (2001) J Mol Catal A: Chem 267:175

    Google Scholar 

  7. Knell A, Barnickel P, Baiker A, Wokaun A (1992) J Catal 306:137

    Google Scholar 

  8. Gottmann J, Kreutz EW (1999) Surf Coat Tech 1189:119

    Google Scholar 

  9. Reinfield R, (2002) J Alloy Compd 56:341

    Google Scholar 

  10. Zhao XY, Vanderbilt D (2002) Phys Rev B Art 65, No. 07510

    Google Scholar 

  11. Fiorentini V, Gulleri G (2002) Phys Rev Lett Art 89 No. 266101

  12. Livage J, Sanchez C (1992) J Non-Cryst Solids 145:11

    Article  CAS  Google Scholar 

  13. Brinker CJ, Sherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing, Academic Press, San Diego

    Google Scholar 

  14. Swamy KCK, Chandrasekhar V, Harland JJ, Holmes JM, Day RO, Holmes RR (1990) J Amer Chem Soc 112:2341

    Article  CAS  Google Scholar 

  15. Veith M, Rammo A (1996) J Organomet Chem 521:429

    Article  CAS  Google Scholar 

  16. Donharl W, Elhofer I, Wiede P, Schubert U (1998) J Chem Soc Dalton Trans 1998:2445

    Article  Google Scholar 

  17. Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Husing N (2005) J Mater Chem 17:4262

    Article  CAS  Google Scholar 

  18. Xu C, Baum TH, Rheingold AL (2004) Inorg Chem 43:1568

    Article  CAS  Google Scholar 

  19. Ahn BY, Seok SI, Baek IC, Hong S-I (2006) Chem Commun 2006:189

    Article  CAS  Google Scholar 

  20. Harris MT, Singhal A, Look JL, Smith-Kristensen JR, Lin JS, Toth LM (1997) J Sol-Gel Sci Technol 41:8

    Google Scholar 

  21. Schubert U, Hüsing N (2000) Synthesis of inorganic materials. Wiley-VCH, Weinheim

    Google Scholar 

  22. Chisholm MH, Zhou Z (2004) J Mater Chem 14:3081

    Article  CAS  Google Scholar 

  23. Fortner KC, Bigi JP, Brown SN (2005) Inorg Chem 44:2803

    Article  CAS  Google Scholar 

  24. Fornasieri G, Rozes L, Le Calve S, Alonso B, Massiot D, Rager MN, Evain M, Boubekeur K, Sanchez C (2005) J Am Chem Soc 4869:127

    Google Scholar 

  25. Schubert U, Fric H, Abstracts of the 13th International Workshop on Sol-Gel Science and Technology, August 21–26 Los Angeles, USA, 555 (P208).

  26. Livage J, Henry M, Sanchez C (1988) Prog Solid St Chem 18:259; Livage J, Henry M (1988) A predictive model for inorganic polymerization reactions. In: Makenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics. Wiley, New York

  27. Senouci A, Yaakoub M, Huguenard C, Henry M (2004) J Mater Chem 14:3215

    Article  CAS  Google Scholar 

  28. Bradley DC, Mehrotra RC, Gaur CP (1978) Metal alkoxides. Academic Press, London

    Google Scholar 

  29. Sanchez C, Ribot F, Toledano P (1991) Chem Mater 3:762

    Article  Google Scholar 

  30. Turova NYa, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer AP, Boston

    Google Scholar 

  31. Seisenbaeva GA, Gohil S, Kessler VG (2004) J Mater Chem 14:3177

    Article  CAS  Google Scholar 

  32. SHELXTL-NT program manual, Bruker AXS 1998

  33. Vaartstra BA, Huffman JC, Gradeff PS, Hubert-Pfalzgraf LG, Daran J-C, Parraud S, Yunlu K, Caulton KG (1990) Inorg Chem 29:3126

    Article  CAS  Google Scholar 

  34. Day VW, Klemperer WG, Pafford MM (2001) Inorg Chem 40:5738

    Article  CAS  Google Scholar 

  35. Kessler VG (2003) Chem Commun 1213

  36. Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Chem Commun 16:1874

    Article  CAS  Google Scholar 

  37. Spijksma GI, Bouwmeester HJM, Blank DHA, Fischer A, Henry M, Kessler VG Inorg Chem (IC 051674 in press)

  38. Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Inorg Chem Comm 7:953

    Article  CAS  Google Scholar 

  39. Fleeting KA, O’Brien P, Otway DJ, White AJP, Williams DJ, Jones AC (1999) Inorg Chem 38:1432

    Article  CAS  Google Scholar 

  40. Patil U, Winter M, Becker HW, Devi A (2003) J Mater Chem 13:2177

    Article  CAS  Google Scholar 

  41. Cambridge Crystallographic Data Centre, Structure No. 269602.

  42. Errington RJ, Ridland J, Clegg W, Coxall RA, Sherwood JM (1998) Polyhedron 17:659

    Article  CAS  Google Scholar 

  43. Bhakta R, Hipler F, Devi A, Regnery S, Ehrhart P, Waser R (2003) Chem Vap Depos 9:295

    Article  CAS  Google Scholar 

  44. Bhakta R, Thomas R, Hipler F, Bettinger HF, Muller J, Ehrhart P, Devi A (2004) J Mater Chem 14:3231

    Article  CAS  Google Scholar 

  45. Ridland J (1998) PhD Thesis, University of Newcastle upon Tyne

  46. Blanchard J, Ribot F, Sanchez C, Bellot PV, Trokiner A (2000) J Non-Cryst Solids 265:83

    Article  CAS  Google Scholar 

  47. Basolo F, Pearson RG (1973) Mechanisms of inorganic reactions, 2nd ed. Wiley Eastern Private Ltd

  48. Wengrovius JH, Garbauskas MF, Williams EA, Going RC, Donahue PE, Smith JF (1986) J Amer Chem Soc 982:108

    Google Scholar 

  49. Schubert U (2004) J Mater Chem 14:3701

    Google Scholar 

  50. Blanchard J, Ribot F, Sanchez C, Bellot PV, Trokiner A (2000) J Non-Cryst. Solids 265:83

    Article  CAS  Google Scholar 

  51. Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS (1984) J Non-Cryst Solids 63:45

    Article  CAS  Google Scholar 

  52. Kessler VG (2004) J Sol-Gel Sci Techn 32:11

    Article  CAS  Google Scholar 

  53. Percy MJ, Bartlett JR, Woolfrey JL, Spiccia L, West BO (1999) J Mater Chem 9:499

    Article  CAS  Google Scholar 

  54. Livage J, Babonneau F, Chatry M, Coury L (1997) Ceram Int 23:13

    Article  CAS  Google Scholar 

  55. Cushing BL, Kolesnichenko VL, O’Connor J (2004) Chem Rev 104:3893

    Article  CAS  Google Scholar 

  56. Magdassi S, Avnir D, Seri-Levy A, Lapidot N, Rottman C, Sorek Y, Gans O (24 February 2000), Internat. Patent WO 00/9652

  57. Chatry M, Henry M, Sanchez C, Livage J (1994) J Sol-gel Sci Technol, 1:233; Werndrup P, Verdenelli M, Chassagneux F, Parola S, Kessler VG (2004), J Mater Chem, 14:344

  58. Gainsford GJ, Al-Salim N, Kemmitt T (2002) Acta Crystallogr, Sect E: Struct Rep Online, 58: m636

    Article  CAS  Google Scholar 

  59. Spijksma GI, Huiskes C, Benes NE, Kruidhof H, Blank DHA, Kessler V, Bouwmeester HJM, Adv Mater (accepted adma. 200502568)

  60. Troitzsch U, Christy AG, Ellis DJ (2004) J Amer Ceram Soc, 87:2058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim G. Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, V.G., Spijksma, G.I., Seisenbaeva, G.A. et al. New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials. J Sol-Gel Sci Technol 40, 163–179 (2006). https://doi.org/10.1007/s10971-006-9209-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-9209-6

Keywords

Navigation