Skip to main content
Log in

Mesoporous structured silica modified with niobium oxide and cobalt hematoporphyrin applied to the simultaneous electrochemical evaluation of oxalic and uric acids

  • Invited Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous SBA-15-type silica, with cylindrical pores hexagonally ordered, was obtained and modified with niobium oxide in a highly dispersed way. Subsequently, a further modification with cobalt hematoporphyrin was performed. The ordered pore structure of the SBA-15 was preserved after successive modifications, maintaining its textural properties. The material was used to modify a carbon paste electrode that was successfully applied to the individual and simultaneous detection of both oxalic acid and uric acid, by using cyclic voltammetry and differential pulse voltammetry. For individual evaluation, the obtained detection limits for oxalic acid and uric acid were 9.94 and 0.17 μmol∙L−1, respectively. However, for the simultaneous evaluation of both analytes, the detection limits were 2.83 and 0.14 μmol∙L−1, for oxalic acid and uric acid, respectively.

Highlights

  • Well-ordered silica grafted with niobia and cobalt hematoporphyrin.

  • SBA-15 texture preserved after successive modifications with niobium oxide and hematoporphyrin macromolecule.

  • Simultaneous electrochemical evaluation of oxalic acid and uric acid.

  • Modified carbon paste electrode for sensitive evaluation of uric and oxalic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G, Chmelka B, Stucky G (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  2. Galarneau A, Cambon H, Renzo FD, Ryoo R, Choi M, Fajula F (2003) Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. N J Chem 27:73–79

    Article  CAS  Google Scholar 

  3. Gibson LT (2014) Mesosilica materials and organic pollutant adsorption: part A removal from air. Chem Soc Rev 43:5163–5172

    Article  CAS  Google Scholar 

  4. Didó CA, Caneppele CDG, Schneid AC, Pereira MB, Costa TMH, Benvenutti EV (2018) Small gold nanoparticles with narrow size distribution achieved in SBA-15 pores by using ionic silsesquioxane instead of thiol group as stabilizer and adhesion agente. Micropor Mesopor Mater 270:48–56

    Article  CAS  Google Scholar 

  5. Didó CA, Mass EB, Pereira MB, Hinrichs R, D’Oca MGM, Costa TMH, Russowsky D, Benvenutti EV (2020) Heterogeneous gold nanocatalyst applied in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones. Colloids Surf A 589:124455

    Article  CAS  Google Scholar 

  6. AbouAitah K, Lojkowski W (2021) Delivery of natural agents by means of mesoporous silica nanospheres as a promising anticancer strategy. Pharmaceutics 13:143

    Article  CAS  Google Scholar 

  7. Tkachenko OS, Souza LV, Deon M, Becker EM, de Menezes EW, Arenas LT, Benvenutti EV (2021) AgNP-decorated SBA-15 for MWCNT paste modified electrode: a sensor for simultaneous voltammetric determination of paracetamol and sulfamethoxazole. Electroanalysis 33:29–37

    Article  CAS  Google Scholar 

  8. de Souza LV, da Rosa DS, Tkachenko OS, Gomes AA, Costa TMH, Arenas LT, Benvenutti EV (2019) The role silica pore structure plays in the performance of modified carbon paste electrodes. Ionics 25:3259–3268

    Article  CAS  Google Scholar 

  9. Pessoa CA, Gushikem Y, Kubota LT (2001) Ferrocenecarboxylic acid adsorbed on Nb2O5 film grafted on a SiO2 surface: NADH oxidation study. Electrochim Acta 46:2499–2505

    Article  CAS  Google Scholar 

  10. de Souza LV, Tkachenko O, Cardoso BN, Pizzolato TM, Dias SLP, Vasconcellos MAZ, Arenas LT, Costa TMH, Moro CC, Benvenutti EV (2019) Strategy to control the amount of titania dispersed on SBA-15 surface preserving its porosity, aiming to develop a sensor for electrochemical evaluation of antibiotics. Micropor Mesopor Mater 287:203–210

    Article  CAS  Google Scholar 

  11. Kondo JN, Hiyoshi Y, Osuga R, Ishikawa A, Wang Y-H, Yokoi T (2018) Thin (single–triple) niobium oxide layers on mesoporous silica substrate. Micropor Mesopor Mater 262:191–198

    Article  CAS  Google Scholar 

  12. Umpierres CS, Prola LDT, Adebayo MA, Lima EC, dos Reis GS, Kunzler DDF, Dotto GL, Arenas LT, Benvenutti EV (2017) Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye. Environm Technol 38:566–578

    Article  CAS  Google Scholar 

  13. Sumiya S, Oumi Y, Sadakane M, Sano T (2009) Facile preparation of SBA-15-supported niobic acid (Nb2O5·nH2O) catalyst and its catalytic activity. Appl Catal A 365:261–267

    Article  CAS  Google Scholar 

  14. Arenas LT, Villis PCM, Arguello J, Landers, Benvenutti EV, Gushikem Y (2010) Niobium oxide dispersed on a carbon ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor. Talanta 83:241–248

    Article  CAS  Google Scholar 

  15. Xu X, Tian B, Zhang S, Kong J, Zhao D, Liu B (2004) Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Anal Chim Acta 519:31–38

    Article  CAS  Google Scholar 

  16. Chen Z, Prosperi M, Bird VY (2019) Prevalence of kidney stones in the USA: the National Health and Nutrition Evaluation Survey. J Clin. Urology 12:296–302

    CAS  Google Scholar 

  17. Zhang D, Li S, Zhang Z, Li N, Yuan X, Jia Z, Yang J (2021) Urinary stone composition analysis and clinical characterization of 1520 patients in central China. Sci Rep 11:6467

    Article  CAS  Google Scholar 

  18. Dong X (2017) Study on detection methods for uric acid in biological samples. Int J Pharm Sci Res 8:926–929

    Google Scholar 

  19. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Regulation of uric acid metabolism and excretion. Int J Cardiol 213:8–14

    Article  Google Scholar 

  20. Ensafi AA, Kazemzadeh A (2000) Flow injection spectrophotometric determination of ultra trace amounts of oxalic acid. Anal Chem 367:590–592

    Article  CAS  Google Scholar 

  21. Khajehsharifi H, Pourbasheer E, Tavallali H, Sarvi S, Sadeghi M (2017) The comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samples. Arab J Chem 10:S3451–S3458

    Article  CAS  Google Scholar 

  22. Wu FW, He ZK, Luo QY, Zeng YE (1999) HPLC determination of oxalic acid using tris(1,10-phenanthroline)ruthenium(II) chemiluminescence-application to the analysis of spinach. Food Chem 65:543–546

    Article  CAS  Google Scholar 

  23. Li XL, Li G, Jiang YZ, Kang D, Jin CH, Shi Q, Jin T, Inoue K, Todoroki K, Toyo'oka T, Min JZ (2015) Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr B 1002:394–398

    Article  CAS  Google Scholar 

  24. Zahavy E, Willner I (1996) Photoinduced electron transfer in eosin-modified Co(II)-protoporphyrin IX reconstituted myoglobin and α- or β-hemoglobin subunits: photocatalytic transformations by the reconstituted photoenzymes. J Am Chem Soc 118:12499–12514

    Article  CAS  Google Scholar 

  25. Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross

  26. Deon M, Caldas EM, Rosa DS, de Menezes EW, Dias SLP, Pereira MB, Costa TMH, Arenas LT, Benvenutti EV (2015) Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. J Solid State Electrochem 19:2095–2105

    Article  CAS  Google Scholar 

  27. Pessoa CA, Gushikem Y (2001) Cobalt porphyrins immobilized on niobium (V) oxide grafted on a silica gel surface: study of the catalytic reduction of dissolved dioxygen. J Porphyr Phthalocya 5:537–544

    Article  CAS  Google Scholar 

  28. Ribeiro ES, Dias SLP, Gushikem Y, Kubota LT (2004) Cobalt (II) porphyrin complex immobilized on the binary oxide SiO2/Sb2O3: electrochemical properties and dissolved oxygen reduction study. Electrochim Acta 49:829–834

    Article  CAS  Google Scholar 

  29. Pottier RH, Kennedy JC, Chow YFA (1988) The pKa values of hematoporphyrin-IX as determined by absorbance and fluorescence spectroscopy. Can J Spectr 33:57–62

    CAS  Google Scholar 

  30. Lucho AMS, Oliveira EC, Pastore HO, Gushikem Y (2004) 3-n-Propylpyridinium chloride silsesquioxane polymer film-coated aluminumphosphate and adsorption of cobalt(II)tetrasulphophthalocyanine: an electrocatalytic oxidation study of oxalic acid. J Electroanal Chem 573:55–60

    CAS  Google Scholar 

  31. Chollier MJ, Epron F, Lamy-Pitara E, Barbier J (1999) Catalytic oxidation of maleic and oxalic acids under potential control of platinum catalysts. Catal Today 48:291–300

    Article  CAS  Google Scholar 

  32. Zhou Y, Tang W, Wang J, Zhang G, Chai S, Zhang L, Liu T (2014) Selective determination of dopamine and uric acid using electrochemical sensor based on poly(alizarin yellow R) film-modified electrode. Anal Methods 6:3474–3481

    Article  CAS  Google Scholar 

  33. Brett AMO, Brett CMA (1996) Eletroquímica Princípios, Métodos e aplicações. Almeida, Coimbra

  34. Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl Chem 67:1699–1723

    Article  CAS  Google Scholar 

  35. Fakhari AR, Rafiee B, Ahmar H, Bagheri A (2012) Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode. Anal Methods 4:3314–3319

    Article  CAS  Google Scholar 

  36. Shang L, Zhao F, Zeng B (2013) Electrodeposition of PdAu alloy nanoparticles on ionic liquid functionalized graphene film for the voltammetric determination of oxalic acid. Electroanalysis 25:453–459

    Article  CAS  Google Scholar 

  37. Raoof JB, Chekin F, Ehsani V (2015) Palladium-doped mesoporous silica SBA-15 modified in carbon-paste electrode as a sensitive voltammetric sensor for detection of oxalic acid. Sens Actuators B 207:291–296

    Article  CAS  Google Scholar 

  38. Ma L, Zeng Q, Zhang M, Wang L, Cheng F (2016) Direct determination of oxalic acid by a bare platinum electrode contrasting a platinum nanoparticles-modified glassy carbon electrode. J Experim Nanosci 11:1242–1252

    Article  CAS  Google Scholar 

  39. Rostami S, Azizi SN, Ghasemi S (2017) Preparation of an efficient electrocatalyst for oxalic acid oxidation based on Ag-doped ZSM-5 nanozeolites synthesized from bagasse. J Electroanal Chem 788:235–245

    Article  CAS  Google Scholar 

  40. Kesavan L, Kalekar AM, Damlin P, Kvarnström C (2019) Reduced graphene oxide supported palladium nano-shapes for electro-oxidation of oxalic acid. J Electroanal Chem 847:113167

    Article  CAS  Google Scholar 

  41. Nagarajan RD, Sundramoorthy AK (2019) One-pot electrosynthesis of silver nanorods/graphene nanocomposite using 4-sulphocalix[4]arene for selective detection of oxalic acid. Sens Actuators B 301:127132

    Article  CAS  Google Scholar 

  42. Dodevska T, Shterev I (2020) Electrochemical non-enzymatic sensing of oxalic acid based on PdPt-modified electrodes: application to the analysis of vegetable samples. Monatsh Chem 151:495–504

    Article  CAS  Google Scholar 

  43. Omar MN, Salleh AB, Lim HN, Tajudin AA (2016) Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal Biochem 509:135–141

    Article  CAS  Google Scholar 

  44. Zhang X, Zhang Y-C, Ma L-X (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 227:488–496

    Article  CAS  Google Scholar 

  45. Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P (2017) Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interfac Sci 497:172–180

    Article  CAS  Google Scholar 

  46. Rahman MM, Lopa NS, Ju MJ, Lee J-J (2017) Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J Electroanal Chem 792:54–60

    Article  CAS  Google Scholar 

  47. Aparna TK, Sivasubramanian R, Dar MA (2018) One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J Alloy Compd 741:1130–1141

    Article  CAS  Google Scholar 

  48. dos Santos PL, Katic V, Toledo KCF, Bonacin JA (2018) Photochemical one-pot synthesis of reduced graphene oxide/prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens Actuators B 255:2437–2447

    Article  CAS  Google Scholar 

  49. Lal R, Bhatti MA, Shahzad G, Tahira A, Panhwar M, Lal B, Nafady A, Ibupoto ZH (2021) Chemically coupled multiwall carbon nanotubes with leaf-like nanostructures of NiO for sensitive and selective determination of uric acid. J Electron Mater 50:2852–2859

    Article  CAS  Google Scholar 

  50. Erdogan ZO, Kucukkolbası S (2021) Fabrication of an electrochemical biosensor based on Fe3O4 nanoparticles and uricase modified carbon paste electrode for uric acid determination. Monatsh Chem 152:309–314

    Article  CAS  Google Scholar 

  51. Yang M, Wang H, Liu P, Cheng J (2021) A 3D electrochemical biosensor based on Super-Aligned Carbon NanoTube array for point-of-care uric acid monitoring. Biosens Bioelectr 179:113082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CMM (Centro de Microscopia e Microanálise—UFRGS) and CNANO (Centro de Nanociência e Nanotecnologia—UFRGS) for the use of microscope and XRD equipment. The authors also thank the CBMM (Companhia Brasileira de Mineração e Metalurgia), which provided the NbCl5 compound.

Funding

The work was financially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, FAPERGS (Fundação de Amparo à Pesquisa do estado do Rio Grande do Sul) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edilson V. Benvenutti or Eliana W. de Menezes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

All authors agree to participate in this work.

Consent for publication

All authors agree on the content and its publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, L.V., Virgili, A.H., Teixeira, G.O. et al. Mesoporous structured silica modified with niobium oxide and cobalt hematoporphyrin applied to the simultaneous electrochemical evaluation of oxalic and uric acids. J Sol-Gel Sci Technol 102, 18–29 (2022). https://doi.org/10.1007/s10971-021-05638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05638-3

Keywords

Navigation