Skip to main content
Log in

In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper describes a method for producing silica particles containing multiple quantum dots (QD/SiO2), a method for surface-modifying the particles with poly(ethylene glycol) (QD/SiO2/PEG), and an in vivo fluorescence imaging technique using colloid solution of the QD/SiO2/PEG particles. The QDs used were ZnS-coated CdSexTe1−x nanoparticles surface-modified with carboxyl groups, and had an average size of 10.3 ± 2.1 nm. The QD/SiO2 particles were fabricated by performing sol–gel reaction of tetraethyl orthosilicate using NaOH as a catalyst in the presence of the QDs. The produced particles formed core–shell structure composed of multiple QDs and silica shell, and had an average size of 50.2 ± 17.9 nm. Surface-modification of the QD/SiO2 particles with PEG, or PEGylation of the particle surface, was performed by using methoxy polyethylene glycol silane. Fluorescence of QD colloid solution was not quenched even through the silica-coating and the PEGylation. Tissues of a mouse could be imaged by injecting the concentrated colloid solution into it and measuring fluorescence intensity emitted from the tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mattoussi H, Palui G, Hyon BN (2012) Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev 64:138–166

    Article  CAS  Google Scholar 

  2. Cassette E, Helle M, Bezdetnaya L, Marchal F, Dubertret B, Pons T (2012) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev (in press)

  3. Lira BR, Cavalcanti BM, Seabra ABLM, Silva CND, Amaral JA, Santos SB, Fontes A (2012) Non-specific interactions of CdTe/Cds quantum dots with human blood mononuclear cells. Micron 43:621–626

    Article  CAS  Google Scholar 

  4. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153:16–22

    Article  CAS  Google Scholar 

  5. Qiang Z, Yuanyuan Q, Meng L, Xinliang L, Jiti Z, Xuwang Z, Hao Z (2012) A sensitive enzyme biosensor for catecholics detection via the inner filter effect on fluorescence of CdTe quantum dots. Sens Actuator B 173:477–482

    Google Scholar 

  6. Gu Z, Yang S, Li Z, Sun X, Wang G, Fang Y, Liu J (2011) An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of grapheme-gold nanocomposite, CdTe-CdS core-shell quantum dots and gold nanoparticles. Anal Chim Acta 701:75–80

    Article  CAS  Google Scholar 

  7. Saran AD, Sadawana MM, Srivastava R, Bellare JR (2011) An optimized quantum dot-ligand system for biosensing applications. Colloid Surf A 384:393–400

    Article  CAS  Google Scholar 

  8. Adeli M, Hakimpoor F, Parsamanesh M, Kalantari M, Sobhani Z, Attyabi F (2011) Quantum dot-pseudopolyrotaxane supramolecules as anticancer drug delivery systems. Polym 52:2401–2413

    Article  CAS  Google Scholar 

  9. Muthu SM, Kulkarni AS, Raju A, Feng SS (2012) Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomater 33:3494–3501

    Article  CAS  Google Scholar 

  10. Kušić H, Leszczynska D (2012) Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots. Chemosphere 89:900–906

    Article  Google Scholar 

  11. Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha SA, Tino A, Rogach LA, Tortiglione C (2012) Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomater 33:1991–2000

    Article  CAS  Google Scholar 

  12. Soenen JS, Demeester J, Smedt DCS, Braeckmans K (2012) The cytotoxic effects of polymer-coated quantum dots and restrictions for live cell applications. Biomater 33:4882–4888

    Article  CAS  Google Scholar 

  13. Ma-Hock L, Brill S, Wohlleben W, Farias AMP, Chaves RC, Tenorio ALPD, Fontes A, Santos SB, Landsiedel R, Strauss V, Treumann S, Ravenzwaay VB (2012) Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male wistar rats. Toxicol Lett 208:115–124

    Article  CAS  Google Scholar 

  14. Darbandi M, Urban G, Kruger M (2012) Bright luminescent, colloidal stable silica coated CdSe/ZnS nanocomposite by an in situ, one-pot surface functionalization. J Colloid Inter Sci 365:41–45

    Article  CAS  Google Scholar 

  15. Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F (2012) Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in balb/3T3 mouse fibroblasts. Mutat Res 745:11–20

    Article  CAS  Google Scholar 

  16. Durgadas VC, Sreenivasan K, Sharma PC (2012) Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomater 33:6420–6429

    Article  CAS  Google Scholar 

  17. Amiri A, Øye G, Sjöblom J (2011) Temperature and pressure effects on stability and gelation properties of silica suspensions. Colloid Surf A 378:14–21

    Article  CAS  Google Scholar 

  18. Wiśniewska M (2012) The temperature effect on the adsorption mechanism of polyacrylamide on the silica surface and its stability. Appl Surf Sci 258:3094–3101

    Article  Google Scholar 

  19. Mondragon R, Julia EJ, Barba A, Carlos JJ (2012) Characterization of silica-water nanofluids dispersed with an ultrasound probe. Powder Technol 224:138–146

    Article  CAS  Google Scholar 

  20. Bardi G, Malvindi AM, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomater 31:6555–6566

    Article  CAS  Google Scholar 

  21. Darbandi M, Urban G, Kruger M (2010) A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. J Colloid Inter Sci 351:30–34

    Article  CAS  Google Scholar 

  22. Kobayashi Y, Nozawa T, Takeda M, Ohuchi N, Kasuya A (2010) Direct silica-coating of quantum dots. J Chem Eng Jpn 43:490–493

    Article  CAS  Google Scholar 

  23. Kobayashi Y, Nozawa T, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2010) Direct coating of quantum dots with silica shell. J Sol-Gel Sci Technol 55:79–85

    Article  CAS  Google Scholar 

  24. Hierrezuelo J, Vaccaro A, Borkovec M (2010) Stability of negatively charged latex particles in the presence of a strong cationic polyelectrolyte at elevated ionic strengths. J Colloid Inter Sci 347:202–208

    Article  CAS  Google Scholar 

  25. Badawy EMA, Scheckel GK, Suidan M, Tolaymat T (2012) The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci Total Envir 429:325–331

    Article  Google Scholar 

  26. Hoecke VK, Schamphelaere DCAK, Meeren VP, Smagghe G, Janssen RC (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH. Envir Pollution 159:970–976

    Article  Google Scholar 

  27. Wu Z, Xiang H, Kim T, Chun MS, Lee K (2006) Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J Colloid Inter Sci 304:119–124

    Article  CAS  Google Scholar 

  28. Song X, Jiang N, Li Y, Xu D, Qiu G (2008) Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension. Mater Chem Phys 110:128–135

    Article  CAS  Google Scholar 

  29. Lee JW, Othman MR, Eom Y, Lee TG, Kim WS, Kim J (2008) The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core-shell particles for photo-catalysis of methyl orange. Micro Meso Mater 116:561–568

    Article  CAS  Google Scholar 

  30. Hua L, Hach D, Chaumont D, Brachais CH, Couvercelle JP (2008) One step grafting of monomethoxy poly(ethylene glycol) during synthesis of maghemite nanoparticles in aqueous medium. Colloid Surf A 330:1–7

    Article  Google Scholar 

  31. Louguet S, Kumar CA, Sigaud G, Duguet E, Lecommandoux S, Schatz C (2011) A physico-chemical investigation of poly(ethylene oxide)-block-poly(l-lysine) copolymer adsorption onto silica nanoparticles. J Colloid Inter Sci 359:413–422

    Article  CAS  Google Scholar 

  32. Kobayashi Y, Ayame T, Nakagawa T, Gonda K, Takeda M, Ohuchi N (2012) X-ray imaging technique using colloid solution of AgI/silica/poly(ethylene glycol) nanoparticles. Mater Focus 1:127–130

    Article  Google Scholar 

Download references

Acknowledgments

We express our thanks to Prof. T. Noguchi in College of Science of Ibaraki University, Japan for his help for TEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, Y., Matsudo, H., Nakagawa, T. et al. In-vivo fluorescence imaging technique using colloid solution of multiple quantum dots/silica/poly(ethylene glycol) nanoparticles. J Sol-Gel Sci Technol 66, 31–37 (2013). https://doi.org/10.1007/s10971-013-2962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-2962-4

Keywords

Navigation