Skip to main content
Log in

Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Starting from calcium chloride dihydrate (CaCl2·2H2O), phosphoric acid (H3PO4), and poly(acrylic acid) (PAA) dissolved in a mixture of water and methanol (MeOH), dicalcium phosphate anhydrous (DCPA, CaHPO4) monoliths with co-continuous macropores and mesopores have been synthesized by the addition of propylene oxide. Macropores are formed as a result of phase separation, while mesopores as interstices between primary particles with the size of ca. 30 nm. Propylene oxide acts as a proton scavenger and leads to moderate pH increase in a reaction solution, which brings about gelation in several minutes. On the other hand, PAA acts as a crystal growth inhibitor as well as a phase separation inducer. The extensive crystal growth of DCPA is hindered by the addition of PAA which allows morphological control of the structure in micrometer range. Fourier transform infrared spectroscopy indicates that PAA and DCPA form composite via interaction between the carboxyl groups and the surface of crystals, and together form gel phase. The solvent phase, which is converted to macropores after evaporative drying, is mainly comprised of solvent. The degree of supersaturation in a reaction solution considerably influence on the crystallization process, and thereby, influences on the porous structure in nano- and micrometer ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999–1007

    Article  CAS  Google Scholar 

  2. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Mawell RS, Satcher JH Jr (2005) Chem Mater 17:395–401

    Article  CAS  Google Scholar 

  3. Baumann TF, Kucheyev SO, Gash AE, Satcher JH Jr (2005) Adv Mater 17:1546–1548

    Article  CAS  Google Scholar 

  4. Gao YP, Sisk CN, Hope-Weeks LJ (2007) Chem Mater 19:6007–6011

    Article  CAS  Google Scholar 

  5. Gash AE, Satcher JH Jr, Simpson RL (2004) J Non-Cryst Solids 350:145–151

    Article  CAS  Google Scholar 

  6. Leventis N, Vassilaras P, Fabrizio EF, Dass A (2007) J Mater Chem 17:1502–1508

    Article  CAS  Google Scholar 

  7. Pettigrew KA, Long JW, Carpenter EE, Baker CC, Lytle JC, Chervin CN, Logan MS, Stroud RM, Rolison DR (2008) ACS Nano 2(4):784–790

    Article  CAS  Google Scholar 

  8. Zhang HD, Li B, Zheng QX, Jiang MH, Tao XT (2008) J Non-Cryst Solids 354:4089–4093

    Article  CAS  Google Scholar 

  9. Borchert Y, Sonstrm P, Wilhelm M, Borchert H, Bumer M (2008) J Phys Chem C 112(8):3054–3063

    Article  CAS  Google Scholar 

  10. Cui H, Zayat M, Levy D (2005) J Non-Cryst Solids 351:2102–2106

    Article  CAS  Google Scholar 

  11. Cui H, Zayat M, Levy D (2005) J. Sol-Gel Sci Technol 35:175–181

    Article  CAS  Google Scholar 

  12. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH Jr, Kauzlarich SM (2006) Chem Mater 18:4865–4874

    Article  CAS  Google Scholar 

  13. Woo K, Lee H, Ahn J-P, Park YS (2003) Adv Mater 15:1761–1764

    Article  CAS  Google Scholar 

  14. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Chem Mater 19:3393–3398

    Article  CAS  Google Scholar 

  15. Nakanishi K (1997) J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  16. Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) J Ceram Soc Jpn 115(2):925–928

    Article  CAS  Google Scholar 

  17. Mullin JW (1972) Crystallisation. Butterworth, London

    Google Scholar 

  18. Gonzalez-McQuire R, Chane-Ching JY, Vignaud E, Lebugle A, Mann S (2004) J Mater Chem 14:2277–2281

    Article  CAS  Google Scholar 

  19. El Shafei GMS, Moussa NA (2001) J Colloid Interface Sci 238:160–166

    Article  CAS  Google Scholar 

  20. Misra DN (1996) J Colloid Interface Sci 181:289–296

    Article  CAS  Google Scholar 

  21. Ikawa N, Hori H, Kimura T, Oumi Y, Sano T (2008) Langmuir 24:13113–13120

    Article  CAS  Google Scholar 

  22. Tsortos A, Nancollas GH (2002) J Colloid Interface Sci 250:159–167

    Article  CAS  Google Scholar 

  23. Nakanishi K, Soga N (1992) J Non-Cryst Solids 139:1–13

    Article  CAS  Google Scholar 

  24. Brug KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347–2359

    Article  Google Scholar 

  25. Bohner M (2000) Injury 31:37–47

    Article  Google Scholar 

  26. Guicheux J, Gauthier O, Aguado E, Heymann D, Pilet P, Couillaud S, Faivre A, Daculsi G (1998) J Biomed Mater Res 40:560–566

    Article  CAS  Google Scholar 

  27. Roy I, Mitra S, Maitra A, Mozumdar S (2003) Int J Pharm 250:25–33

    Article  CAS  Google Scholar 

  28. Ohta K, Monma H, Takahashi S (2001) J Biomed Mater Res 55:409–414

    Article  CAS  Google Scholar 

  29. Josse S, Faucheux C, Soueidan A, Grimandi G, Massiot D, Alonso B, Janvier P, Laïb S, Gauthier O, Daculsi G, Guicheux J, Bujoli B, Bouler J-M (2004) Adv Mater 16(16):1423–1427

    Article  CAS  Google Scholar 

  30. Fujishima M, Okawa Y, Uchida K (2008) J Am Ceram Soc 91(11):3749–3752

    Article  CAS  Google Scholar 

  31. Liu C, Han Z, Czernuszka JT (2009) Acta Biomater 5:661–669

    Article  CAS  Google Scholar 

  32. Zhang R, Ma PX (1999) J Biomed Mater Res 44(4):446–455

    Article  CAS  Google Scholar 

  33. Kosar-Grašić B, Pugarić B, Füredi-Milhofer H (1978) J Inorg Nucl Chem 40:1877–1880

    Article  Google Scholar 

  34. Eshtiagh-Hosseini H, Houssaindokht MR, Chahkandhi M, Youssefi A (2008) J Non-Cryst Solids 354:3854–3857

    Article  CAS  Google Scholar 

  35. Åkerlöf G (1932) J Am Chem Soc 54(11):4125–4139

    Article  Google Scholar 

  36. Madsen HEL, Thorvardarson G (1984) J Crystal Growth 66:369–376

    Article  CAS  Google Scholar 

  37. Tortet L, Gavarri JR, Nihoul G, Dianoux AJ (1997) J Solid State Chem 132:6–16

    Article  CAS  Google Scholar 

  38. Pouchert CJ (1985) The Aldrich Library of FT-IR spectra. Aldrich Chemical Co, Milwaukee

    Google Scholar 

  39. Arndt K-F, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler H-J (1999) Acta Polym 50:383–390

    Article  CAS  Google Scholar 

  40. Deniau G, Azoulay L, Bougerolles L, Palacin S (2006) Chem Mater 18:5421–5428

    Article  CAS  Google Scholar 

  41. Daniliuc L, De Kesel C, David C (1992) Eur Polym J 28:1365–1371

    Article  CAS  Google Scholar 

  42. Nara M, Morii H, Yumoto F, Kagi H, Tanokura M (2006) Biopolymers 82:339–343

    Article  CAS  Google Scholar 

  43. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Biomaterials 23:3193–3201

    Article  CAS  Google Scholar 

  44. Grover LM, Gbureck U, Young AM, Wright AJ, Barralet JE (2005) J Mater Chem 15:4955–4962

    Article  CAS  Google Scholar 

  45. Chen H-I, Chang H-Y (2004) Colloids Surf A: Phys Eng Asp 242:61–69

    Article  CAS  Google Scholar 

  46. Gash AE, Satcher JH Jr, Simpson RL (2003) Chem Mater 15:3268–3275

    Article  CAS  Google Scholar 

  47. Bach RD, Dmitrenko O (2002) J Org Chem 67:2588–2599

    Article  CAS  Google Scholar 

  48. Gómesz-Morales J, Torrent-Burgués J, Rodríguez-Clemente R (1996) J Crystal Growth 169:331–338

    Article  Google Scholar 

  49. Reddy MM, Plummer LN, Busenberg E (1981) Geochim Cosmochim Acta 45:1281–1289

    Article  CAS  Google Scholar 

  50. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  51. De Gennes PG (1980) J Chem Phys 72(9):4756–4763

    Article  Google Scholar 

  52. Hench LL, Wilson J (1993) Introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  53. Arita IH, Castano VM, Wilkinson DS (1995) J Mater Sci: Mater Med 6:19–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Grant-in-Aid for Scientific Research (No. 20350094) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and was partly supported by the Global COE Program “Integrated Materials Science” (No. B-09) of the MEXT, administrated by the Japan Society for the Promotion of Science (JSPS). Y. T. thanks the Grant-in-Aid for Fellow (No. 21-607) from JSPS. This work was partially carried out using facilities of Research Center for Low Temperature and Materials Sciences, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokudome, Y., Miyasaka, A., Nakanishi, K. et al. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J Sol-Gel Sci Technol 57, 269–278 (2011). https://doi.org/10.1007/s10971-010-2184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2184-y

Keywords

Navigation