Skip to main content
Log in

Effect of Cr doping on the ac electrical properties of MgAl2O4 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Magnesium aluminate nanoparticles with different chromium concentration (0–12%) have been synthesized by a citrate–nitrate sol–gel route. X-ray diffraction studies confirmed the formation of single-phase cubic spinel structure excluding the presence of any secondary phase. Crystallite size of the synthesized nanoparticles was found to increase from 8.5 to 19.8 nm with the increase in Cr concentration. Fourier transformed infrared spectroscopic studies confirmed the presence of AlO6 group which led to the formation of MgAl2O4 spinel structure. Surface morphology of the sintered pellets was investigated with the help of a field emission scanning electron microscope which revealed the existence of both grain and grain boundary along with their aggregates. The dielectric constant, dielectric loss and ac conductivity were studied as a function of frequency of the applied electric field for different composition and their nature of variation with frequency has been elucidated on the basis of Maxwell–Wagner interfacial model. Impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of this spinel oxide. All the electrical parameters showed strong dependence on the nanostructural properties and were found to vary consistently with the increase of doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mohapatra D, Sarkar D (2007) J Mater Sci 42:7286

    Article  CAS  Google Scholar 

  2. Thome L, Gentils A, Jagielski J, Garrido F, Thome T (2007) Vacuum 81:1264

    Article  CAS  Google Scholar 

  3. Ajayan PM, Redlich P, Ruhle M (1997) J Microsc 185:275

    Article  CAS  Google Scholar 

  4. Wang Z, Chang CL, Zhao X, Qian W, Zhang X, Xie Z, Hwang BH, Hu C, Shen J, Hui R (2009) J Power Sour 190:351

    Article  CAS  Google Scholar 

  5. Omkaram I, Vengala Rao B, Buddhudu S (2009) J Alloy Compd 474:565

    Article  CAS  Google Scholar 

  6. Bocanegra SA, de Miguel SR, Castro AA, Scelza OA (2004) Catal Lett 96:129

    Article  CAS  Google Scholar 

  7. Sehested J, Carlsson A, Janssens TVW, Hansen PL, Datye AK (2001) J Catal 197:200

    Article  CAS  Google Scholar 

  8. Baudin C, Martínez R, Pena P (1995) J Am Ceram Soc 78:1857

    Article  CAS  Google Scholar 

  9. Schmocker U, Waldner F (1976) J Phys C 9:L235

    Article  CAS  Google Scholar 

  10. Sen A, Maiti UN, Thapa R, Chattopadhyay KK (2010) J Alloy Compd 506:853

    Article  CAS  Google Scholar 

  11. Selvan RK, Krishnan V, Augustin CO, Bertagnolli H, Kim CS, Gedanken A (2008) Chem Mater 20:429

    Article  CAS  Google Scholar 

  12. Iqbal MJ, Ashiq MN (2008) Chem Eng J 136:383

    Article  CAS  Google Scholar 

  13. Omkaram I, Vengala Rao B, Buddhudu S (2009) J Alloy Compd 474:565

    Article  CAS  Google Scholar 

  14. Lin J, Huang Y, Zhang J, Shi F, Wei S, Gao J, Ding X, Tang C (2009) Mater Res Bull 44:106

    Article  CAS  Google Scholar 

  15. Sun G, Sun L, Wen H, Jia Z, Huang K, Hu C (2006) J Phys Chem B 110:13375

    Article  CAS  Google Scholar 

  16. Kurien S, Sebastian S, Mathew J, George KC (2004) Ind J Pure Appl Phys 42:926

    CAS  Google Scholar 

  17. Iqbal MJ, Ismail B (2009) J Alloy Compd 472:434

    Article  CAS  Google Scholar 

  18. Mohamed MB, Wang H, Fuess H (2010) J Phys D 43:455409

    Article  Google Scholar 

  19. Patterson AL (1939) Phys Rev Online Arch (Prola) 56:978

    CAS  Google Scholar 

  20. Kang JY, Tsunekawa S, Kasuya A (2001) Appl Surf Sci 174:306

    Article  CAS  Google Scholar 

  21. Williamson GK, Hall WH (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  22. Callister WD (2007) Materials science and engineering—an introduction. Wiley, New York

    Google Scholar 

  23. Qiu Z, Zhou Y, Lu M, Zhang A, Ma Q (2007) Acta Mater 55:2615

    Article  CAS  Google Scholar 

  24. Chandradassa J, Balasubramanian M, Bae DS, Kim J, Kim KH (2010) J Alloy Compd 491:L25

    Article  Google Scholar 

  25. Rege SU, Yang RT (2001) Chem Eng Sci 56:3781

    Article  CAS  Google Scholar 

  26. Guo J, Lou H, Zhao H, Wang X, Zheng X (2004) Mater Lett 58:1920

    Article  CAS  Google Scholar 

  27. Zawrah MF (2004) Mater Sci Eng A 382:362

    Article  Google Scholar 

  28. Tate J, Ju HL, Moon JC, Zakutayev A, Richard AP, Russell J, McIntyre DH (2009) Phys Rev B 80:165

    Article  Google Scholar 

  29. Banerjee AN, Chattopadhyay KK (2004) Appl Surf Sci 225:243

    Article  CAS  Google Scholar 

  30. Bueno PR, Varela JA, Longo E (2007) J Eur Ceram Soc 27:4313

    Article  CAS  Google Scholar 

  31. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  32. Liu J, Duan C, Mei WN, Smith RW, Hardy JR (2005) J Appl Phys 98:093703

    Article  Google Scholar 

  33. Sato T, Shirai M, Tanaka K, Kawabe Y, Hanamura E (2005) J Lum 114:155

    Article  CAS  Google Scholar 

  34. Fujimoto Y, Tanno H, Izumi K, Yoshida S, Miyazaki S, Shirai M, Tanaka K, Kawabe Y, Hanamura E (2008) J Lum 128:282

    Article  CAS  Google Scholar 

  35. Dar MA, Batoo KM, Verma V, Siddiqui WA, Kotnala RK (2010) J Alloy Compd 493:553

    Article  CAS  Google Scholar 

  36. Wagner KW (1913) Ann Phys 40:817

    Article  Google Scholar 

  37. Koops CG (1951) Phys Rev 83:121

    Article  CAS  Google Scholar 

  38. Shaikh AM, Bellard SS, Chougule BK (1999) J Magn Magn Mater 195:384

    Article  CAS  Google Scholar 

  39. Azam A, Ahmed AS, Chaman M, Naqvi AH (2010) J Appl Phy 108:094329

    Article  Google Scholar 

Download references

Acknowledgment

Authors are grateful to the Department of Science and Technology (DST), the Government of India for providing financial assistance. The authors are also grateful to the University Grants Commission, the Govt. of India for support under the ‘University with potential for excellence’ scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Kumar Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Das, B., Mazumder, N. et al. Effect of Cr doping on the ac electrical properties of MgAl2O4 nanoparticles. J Sol-Gel Sci Technol 61, 518–526 (2012). https://doi.org/10.1007/s10971-011-2654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2654-x

Keywords

Navigation