Skip to main content
Log in

Aerosol-assisted synthesis of mesoporous titania nanoparticles with high surface area and controllable phase composition

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous titania nanoparticles (denoted as MTN) with high surface area (e.g., 252 m2 g−1) were prepared using tetrapropyl orthotitanate (TPOT) as a titania precursor and 10–20 nm or 20–30 nm silica colloids as templates. Co-assembly of TPOT and silica colloids in an aerosol-assisted process and immediate calcination at 450 °C resulted in anatase/silica composite nanoparticles. Subsequent removal of the silica colloids from the composite by NaOH solution created mesopores in the TiO2 nanoparticles with pore size corresponding to that of silica colloids. Effects of silica colloids’ contents on MTN porosity and crystallites’ growth at a higher calcination temperature (e.g., 1000 °C) were investigated. Silica colloids suppressed the growth of TiO2 crystallites during calcination at a higher calcination temperature and controllable contents of the silica colloids in precursor solution resulted in various atomic ratios of anatase to rutile in the calcinated materials. The mesostructure and crystalline structure of these titania materials were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), differential thermal analysis (DTA)-thermo-gravimetric analysis (TGA), and N2 sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khan SUM, Shahry MA, Ingler WB (2002) Science 297:2243

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Stiehl JD, Kim TS, McClure SM, Mullins CB (2004) J Am Chem Soc 126:13574

    Article  CAS  PubMed  Google Scholar 

  3. Yu JC, Zhang LC, Yu JG (2002) Chem Mater 14:4647

    Article  CAS  Google Scholar 

  4. Cabrera S, El-Haskouri J, Beltran-Portier A, Beltran-Portier D, Marcos AD, Amoros P (2000) Solid State Sci 2:513

    Article  CAS  ADS  Google Scholar 

  5. Wagemaker M, Kentgens APM, Mulder FM (2002) Nature 418:397

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Chen MS, Goodman DW (2004) Science 306:252

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Gao XP, Zhu HY, Pan GL, Ye SH, Lan Y, Wu F, Song DY (2004) J Phys Chem B 108:2868

    Article  CAS  Google Scholar 

  8. Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770

    Article  CAS  Google Scholar 

  9. Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Graetzel M (2004) Chem Mater 16:477

    Article  CAS  Google Scholar 

  10. Stone VF, Davis RJ (1998) Chem Mater 10:1468

    Article  CAS  Google Scholar 

  11. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  ADS  Google Scholar 

  12. Attard GS, Glyde JC, Goltner CG (1995) Nature 378:366

    Article  CAS  ADS  Google Scholar 

  13. Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Nature 385:420

    Article  CAS  ADS  Google Scholar 

  14. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Li D, Zhou H, Honma I (2004) Nat Mater 3:65

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Miyata H, Suzuki T, Fukuoka A, Sawada T, Watanabe M, Noma T, Takada K, Mukaide T, Kuroda K (2004) Nat Mater 3:651

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M (2005) J Am Chem Soc 127:16396

    Article  CAS  PubMed  Google Scholar 

  18. Peng T, Zhao D, Dai K, Shi W, Hirao K (2005) J Phys Chem B 109:4947

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Yang W, Ma Y, Ye X, Yao J (2003) New J Chem 27:529

    Article  CAS  Google Scholar 

  20. Wu ZW, Hu QY, Pang JB, Jakobsen HP, Yu DH, Lu YF (2005) Microporous Mesoporous Mater 85:305

    Article  CAS  Google Scholar 

  21. Hampsey JE, Hu Q, Wu Z, Rice L, Pang J, Lu Y (2005) Carbon 43:2977

    Article  CAS  Google Scholar 

  22. Hampsey JE, Hu Q, Rice L, Pang J, Wu Z, Lu Y (2005) Chem Commun 28:3606

    Article  Google Scholar 

  23. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  24. Huang W, Tang X, Wang Y, Koltypin Y, Gedanken A (2000) Chem Commun 1415

  25. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by NASA (Grant No. NAG-1-02070 and NCC-3-946), the Office of Naval Research, the Louisiana Board of Regents (Grant No. LEQSF(2001-04)-RD-B-09), National Science Foundation (Grant No. NSF-DMR-0124765, and CAREER award).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwang Wu or Yunfeng Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Lu, Y. Aerosol-assisted synthesis of mesoporous titania nanoparticles with high surface area and controllable phase composition. J Sol-Gel Sci Technol 53, 287–292 (2010). https://doi.org/10.1007/s10971-009-2089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2089-9

Keywords

Navigation