Skip to main content

Synthesis Strategies for the Preparation of Sol-Gel Nanocomposites

  • Chapter
  • First Online:
Sol-Gel Nanocomposites

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter describes the different strategies used to obtain sol-gel nanocomposites. Starting from defining what sol-gel nanocomposites are, the two principal general approaches , “in situ” and “ex situ” methods, are described giving specific examples. Some information is given, at the beginning, on topics which are important for the comprehension of the subject, but are limited to a synthetic and basic description, referring the reader to other sources for more detailed analysis. Both the sub-chapters devoted to in situ and ex situ strategies are organized by type of nanocomposites, distinguishing on the base of the matrix (oxide, organic–inorganic hybrid, polymer) and on the dispersed phase (chalcogenides, halides , oxide, metal nanoparticles, and biological species).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383. doi:10.1098/rsta.2009.0273

    Article  Google Scholar 

  2. Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003

    Article  Google Scholar 

  3. Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3:1981–2026. doi:10.3390/ma3031981

    Article  Google Scholar 

  4. Caragheorgheopol A, Chechik V (2008) Mechanistic aspects of ligand exchange in Au nanoparticles. Phys Chem Phys 10:5029–5041. doi:10.1039/b805551c

    Article  Google Scholar 

  5. Nogami M, Kato A (1994) Formation of CdSxSe1-x microcrystals in sol-gel derived glasses. J Sol-Gel Sci Technol 2:751–754. doi:10.1007/BF00486343

    Article  Google Scholar 

  6. Nogami M, Nagasaka K, Kato E (1990) Preparation of small-particle-size, semiconductor cds-doped silica glasses by the sol-gel process. J Am Cer Soc 73:2097–2099. doi:10.1111/j.1151-2916.1990.tb05275.x

    Article  Google Scholar 

  7. Nogami M, Nagasaka K, Kotani K (1990) Microcrystalline PbS doped silica glasses prepared by the sol-gel process. J Non-Cryst Solids 126:87–92. doi:10.1016/0022-3093(90)91026-N

    Article  Google Scholar 

  8. Nogami M, Suzuki S, Nagasaka K (1991) Sol-gel processing of small-sized CdSe crystal-doped silica glasses. J Non-Cryst Solids 135:182–188. doi:10.1016/0022-3093(91)90418-6

    Article  Google Scholar 

  9. Nogami M, Nagasaka K, Suzuki S (1992) Sol-gel synthesis of Cadmium telluride-microcrystal-doped silica glasses. J Am Cer Soc 75:220–223. doi:10.1111/j.1151-2916.1992.tb05471.x

    Article  Google Scholar 

  10. Nogami M, Zhu Y-Q, Tohyama Y, Nagasaka K, Tokizaki T, Nakamura A (1991) Preparation and nonlinear optical properties of quantum-sized CuCl-doped silica glass by the sol-gel process. J Am Cer Soc 74:238–240. doi:10.1111/j.1151-2916.1991.tb07326.x

    Article  Google Scholar 

  11. Nogami M, Zhu Y-Q, Tohyama Y, Nagasaka K (1991) Preparation and quantum size effect of CuBr microcrystal doped glasses by the sol-gel process. J Non-Cryst Solids 134:71–76. doi:10.1016/0022-3093(91)90012-U

    Article  Google Scholar 

  12. Takada T, Yano T, Yasumori A, Yamane M, Mackenzie JD (1992) Preparation of quantum-size CdS-doped Na2O-B2O3-SiO2 glasses with high non-linearity. J Non-Cryst Solids 147&148:631–635. doi:10.1016/S0022-3093(05)80689-1

    Article  Google Scholar 

  13. Piñero M, Litrán R, Fernández-Lorenzo C et al (1994) CdS semiconductor nanoparticles in silica sonogel matrices. J Sol-Gel Sci Technol 2:689–694. doi:10.1007/BF00486333

    Article  Google Scholar 

  14. Litrán R, Alcántara R, Blanco E, Ramirez-del-Solar M (1997) Confinement of CdS nanocrystals in a sonogel matrix. J Sol-Gel Sci Technol 8:275–283. doi:10.1007/BF02436852

    Google Scholar 

  15. Hummel DA, Torriani IL, Craievich AF et al (1997) Influence of Cd content and Se doping on the formation of CdSe nanocrystals in silica xerogels: a SAXS study. J Sol-Gel Sci Technol 8:285–291. doi:10.1007/BF02436853

    Google Scholar 

  16. Tohge N, Asuka M, Minami T (1992) Sol-gel preparation and optical properties of silica glasses containing Cd and Zn chalcogenide microcrystals. J Non-Cryst Solids 147&148:652–656. doi:10.1016/S0022-3093(05)80693-3

    Article  Google Scholar 

  17. Guglielmi M, Martucci A, Righini GC, Pelli S (1994) CdS- and PbS-doped silica-titania optical waveguides. SPIE Sol-Gel Optics III 2288:174–182. doi:10.1117/12.188949

    Article  Google Scholar 

  18. Cordoncillo E, Escribano P, Monros G et al (1995) The preparation of CdS particles in silica glasses by a sol-gel method. J Solid State Chem 118:1–5. doi:10.1006/jssc.1995.1302

    Article  Google Scholar 

  19. Boev VI, Silva CJR, Hungerford G, Gomes M (2004) Synthesis and characterization of a sol-gel derived ureasilicate hybrid organic-inorganic matrix containing CdS colloidal particles. J Sol-Gel Sci Technol 31:131–135. doi:10.1023/B:JSST.0000047974.33153.e6

    Article  Google Scholar 

  20. Goncalves MC, Bermudez VZ, Ostrovskii D, Carlos LD (2002) Infrared and Raman spectroscopic investigation of Eu3+-doped and di-urethanesil hybrid siliceous materials. Ionics 8:62–72. doi:10.1007/BF02377754

    Article  Google Scholar 

  21. De La Rosa-Fox N, Santos A, Pinero M et al (1998) SANS study of CdS and CdSe quantum dot crystal growth in a silica matrix by sol-gel. J Sol-Gel Sci Technol 13:629–633. doi:10.1023/A:1008611814985

    Article  Google Scholar 

  22. Breitscheidel B, Zieder J, Schubert U (1991) Metal complexes in inorganic matrices. 7. nanometer-sized, uniform metal particles in a sio2 matrix by sol-gel processing of metal complexes. Chem Mat 3:559–566. doi:10.1021/cm00015a037

    Article  Google Scholar 

  23. Martucci A, Bassiri N, Guglielmi M et al (2003) NiO-SiO2 sol-gel nanocomposite films for optical gas sensor. J Sol-Gel Sci Technol 26:993–996. doi:10.1023/A:1020717614995

    Article  Google Scholar 

  24. Martucci A, Pasquale M, Guglielmi M et al (2003) Nanostructured silicon oxide-nickel oxide sol-gel films with enhanced optical carbon monoxide gas sensitivity. J Am Cer Soc 86:1638–1640. doi:10.1111/j.1151-2916.2003.tb03533.x

    Article  Google Scholar 

  25. Martucci A, Buso D, De Monte M et al (2004) Nanostructured sol-gel silica thin films doped with NiO and SnO2 for gas sensing applications. J Mat Chem 14:2889–2895. doi:10.1039/B405301J

    Article  Google Scholar 

  26. Cantalini C, Post M, Buso D et al (2005) Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol-gel films. Sens Actuators B 108:184–192. doi:10.1016/j.snb.2004.11.073

    Article  Google Scholar 

  27. Buso D, Busato G, Guglielmi M et al (2007) Selective optical detection of H2 and CO with SiO2 sol-gel films containing NiO and Au nanoparticles. Nanotechnology 18:475505. doi:10.1088/0957-4484/18/47/475505

    Article  Google Scholar 

  28. Della Gaspera E, Guglielmi M, Agnoli S et al (2010) Au nanoparticles in nanocrystalline TiO2-NiO films for SPR-based, selective H2S gas sensing. Chem Mat 22:3407–3417. doi:10.1021/cm100297q

    Article  Google Scholar 

  29. Gharagozlou M (2011) Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor. Chem Cent J 5(19):1–7. doi:10.1186/1752-153X-5-19

    Google Scholar 

  30. Cao G (2004) Nanostructures and nanomaterials synthesis, properties and applications, Imperial College Press, London

    Google Scholar 

  31. Petrullat J, Ray S, Guldner G et al (1992) Preparation and processing of metal-ceramic composite materials. J Non-Cryst Solids 147&148:594–597. doi:10.1016/S0022-3093(05)80683-0

    Article  Google Scholar 

  32. Datta S, Das GC (1992) Preparation of glass-silver microcomposites by sol-gel route. Bull Mater Sci 15:363–366. doi:10.1007/BF02747646

    Article  Google Scholar 

  33. Mennig M, Spanhel J, Schmidt H, Betzholz S (1992) Photoinduced formation of silver colloids in a borosilicate sol-gel system. J Non-Cryst Solids 147&148:326–330. doi:10.1016/S0022-3093(05)80638-6

    Article  Google Scholar 

  34. Takahashi R, Sato S, Sodesawa T et al (2000) Preparation of Cu/SiO2 catalyst by solution exchange of wet silica gel. J Sol-Gel Sci Technol 19:715–718. doi:10.1023/A:1008779226170

    Article  Google Scholar 

  35. Giacoin T, Chaput F, Boilot JP (1994) Metal, semiconductor and magnetic nanoparticle inclusions in gels. J Sol-Gel Sci Technol 2:679–683. doi:10.1007/BF00486331

    Article  Google Scholar 

  36. Kickelbick G (2008) The search of a homogeneously dispersed material—the art of handling the organic polymer/metal oxide interface. J Sol-Gel Sci Technol 46:281–290. doi:10.1007/s10971-008-1731-2

    Article  Google Scholar 

  37. Yogo T, Kikuta K, Yamada S, Hirano S (1994) Synthesis of barium titanate/polymer composites from metal alkoxide. J Sol-Gel Sci Technol 2:175–179. doi:10.1007/BF00486236

    Article  Google Scholar 

  38. Hirano S, Yogo T, Sakamoto W et al (2001) In situ processing of electroceramic fine particles/polymer hybrids. J Eur Ceram Soc 21:1479–1483. doi:10.1016/S0955-2219(01)00045-0

    Article  Google Scholar 

  39. Hirano S, Yogo T, Sakamoto W et al (2003) In situ processing of nano crystalline oxide particles/polymer hybrid. J Sol-Gel Sci Technol 26:35–41. doi:10.1023/A:1020772915169

    Article  Google Scholar 

  40. Huang Y, Gu Y (2003) New polyimide–silica organic–inorganic hybrids. J Appl Polym Sci 88:2210–2214. doi:10.1002/app.11885

    Article  Google Scholar 

  41. Park H, Kim JH, Kim JK, Lee YM (2002) Morphology of a poly(imide siloxane) segmented copolymer/silica hybrid composite. Macromol Rapid Commun 23:544–550. doi:10.1002/1521-3927(20020601)23:9<544

    Article  Google Scholar 

  42. Musto P, Ragosta G, Scarinzi G, Mascia L et al (2004) Polyimide-silica nanocomposites: spectroscopic, morphological and mechanical investigations. Polymer 45:1697–1706. doi:10.1016/j.polymer.2003.12.044

    Article  Google Scholar 

  43. Kizilkaya C, Karataş S, Apohan N, Güngör A (2010) Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique. J Appl Polym Sci 115:3256–3264. doi:10.1002/app.31404

    Article  Google Scholar 

  44. Ragosta G, Musto P (2009) Polyimide/silica hybrids via the sol-gel route: high performance materials for the new technological challenges. Expr Polymer Lett 3:413–428. doi:10.3144/expresspolymlett.2009.51

    Article  Google Scholar 

  45. Li Y, Fu S, Li Y et al (2007) Improvements in transmittance, mechanical properties and thermal stability of silica–polyimide composite films by a novel sol-gel route. Compos Sci Technol 67:2408–2416. doi:10.1016/j.compscitech.2007.01.003

    Article  Google Scholar 

  46. Chen B, Chiu T, Tsay S (2004) Synthesis and characterization of polyimide/silica hybrid nanocomposites. J Appl Polym Sci 94:382–393. doi:10.1002/app.20947

    Article  Google Scholar 

  47. Ykeda Y, Tanaka A, Kohjiya S (1997) Reinforcement of styrene–butadiene rubber vulcanizate by in situ silica prepared by the sol-gel reaction of tetraethoxysilane. J Mater Chem 7:1497–1503. doi:10.1039/A700648I

    Article  Google Scholar 

  48. Kohjiya S, Ykeda Y (2003) In situ formation of particulate silica in natural rubber matrix by the sol-gel reaction. J Sol-Gel Sci Technol 26:495–498. doi:10.1023/A:1020743214628

    Article  Google Scholar 

  49. Ikeda Y, Kameda Y (2004) Preparation of “green” composites by the sol-gel process: in situ silica filled natural rubber. J Sol-Gel Sci Technol 31:137–142

    Article  Google Scholar 

  50. Spanhel L, Arpac E, Schmidt H (1992) Semiconductor clusters in the sol-gel process: synthesis and properties of CdS nanocomposites. J Non-Cryst Solids 147&148:657–662. doi:10.1016/S0022-3093(05)80694-5

    Article  Google Scholar 

  51. Guglielmi M, Martucci A, Menegazzo E et al (1997) Control of semiconductor particle size in sol-gel thin films. J Sol-Gel Sci Technol 8:1017–1021. doi:10.1007/BF02436977

    Google Scholar 

  52. Martucci A, Fick J, Schell J et al (1999) Microstructural and nonlinear optical properties of silica–titania sol-gel film doped with PbS quantum dots. J Appl Phys 86:79–87. doi:10.1063/1.370702

    Article  Google Scholar 

  53. Martucci A, Innocenzi P, Fick J, Mackenzie JD (1999) Zirconia-ormosil films doped with PbS quantum dots. J Non-Cryst Solids 244:55–62. doi:10.1016/S0022-3093(98)00845-X

    Article  Google Scholar 

  54. Saraidarov T, Reisfeld R, Sashchiuk A, Lifshitz E (2003) Synthesis and characterization of lead sulfide nanoparticles in zirconia-silica-urethane thin films prepared by the sol-gel process. J Sol-Gel Sci Technol 26:533–540. doi:10.1023/A:1020707601424

    Article  Google Scholar 

  55. Antonello A, Brusatin G, Guglielmi M et al (2011) Novel multifunctional nanocomposites from titanate nanosheets and semiconductor quantum dots. Opt Mater 33:1839–1846. doi:10.1016/j.optmat.2011.02.027

    Article  Google Scholar 

  56. Van Embden J, Mulvaney P (2005) Nucleation and growth of cdse nanocrystals in a binary ligand system. Langmuir 21:10226–10233. doi:10.1021/la051081l

    Article  Google Scholar 

  57. Buso D, Falcaro P, Costacurta S et al (2005) PbS-doped mesostructured silica films with high optical nonlinearity. Chem Mat 17:4965–4970. doi:10.1021/cm050850j

    Article  Google Scholar 

  58. Schmidt HK, Geiter E, Mennig M et al (1998) The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties. J Sol-Gel Sci Technol 13:397–404. doi:10.1023/A:1008660909108

    Google Scholar 

  59. Peeters MPJ (2000) An NMR study of MeTMS based coatings filled with colloidal silica. J Sol-Gel Sci Technol 19:131–135. doi:10.1023/A:1008795113990

    Article  Google Scholar 

  60. Sajjad M, Feichtenschlager B, Pabisch S et al (2012) Study of the effect of the concentration, size and surface chemistry of zirconia and silica nanoparticle fillers within an epoxy resin on the bulk properties of the resulting nanocomposites. Polym Int 61:274–285. doi:10.1002/pi.3183

    Article  Google Scholar 

  61. Della Gaspera E, Antonello A, Guglielmi M et al (2012) Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J Mater Chem 21:4293–4300. doi:10.1039/C0JM03494K

    Article  Google Scholar 

  62. Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach. J Am Chem Soc 120:8587–8598. doi:10.1021/ja9814568

    Article  Google Scholar 

  63. Ferrer ML, del Monte F, Levy D (2002) A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins. Chem Mat 14:3619–3621. doi:10.1021/cm025562r

    Article  Google Scholar 

  64. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030. doi:10.1039/b512706h

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Guglielmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guglielmi, M. (2014). Synthesis Strategies for the Preparation of Sol-Gel Nanocomposites. In: Guglielmi, M., Kickelbick, G., Martucci, A. (eds) Sol-Gel Nanocomposites. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1209-4_3

Download citation

Publish with us

Policies and ethics