Skip to main content

Advertisement

Log in

Nanoindentation testing of SiO2-PMMA hybrid films on acrylic substrates with variable coupling agent content

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we report the influence of the molar composition of the coupling agent, as well as the curing conditions on the mechanical properties of SiO2-PMMA (polymethyl methacrylate) hybrid films deposited on organic acrylic substrates. The SiO2-PMMA hybrid films were deposited by the sol–gel method from hybrid precursor solutions with fixed molar ratio of 1:0.25 for TEOS/MMA (Tetraethyl-orthosilicate/Methylmethacrylate) and TEOS/TMSPM (3-trimethoxysilyl propyl methacrylate) molar ratios ranging from 1:0.05 to 1:0.2. The organic compound TMSPM was used as coupling agent to enhance the bond between the organic and inorganic molecules. The wear resistance, hardness and elastic modulus of the hybrid films were determined by nanoindentation techniques and compared to the substrate mechanical behaviour. The chemical bonding in the hybrid films was analyzed by Fourier Transform Infrared spectroscopy and their transparency by optical transmission and reflection spectroscopy. The friction coefficient and sliding life of the hybrid films were also measured with a pin-on-disc tribometer. The surface morphology and roughness were determined from atomic force microscopy images. The hybrid films with lowest content of coupling agent showed the best mechanical performance in terms of hardness, friction coefficient and wear resistance keeping high optical transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sanchez C (2005) J Mater Chem 15:3557

    Article  CAS  Google Scholar 

  2. Sanchez C, Julián B, Belleville P, Popall M (2005) J Mater Chem 15:3559

    Article  CAS  Google Scholar 

  3. Al-Kandary Sh, Ali AAM, Ahmad Z (2006) J Mat Sci 41:2907

    Article  CAS  ADS  Google Scholar 

  4. Rubio E, Almaral J, Ramírez-Bon R, Castaño V, Rodriguez V (2005) Opt Mat 27:1266

    Article  CAS  Google Scholar 

  5. Wen J, Wilkes GL (1996) Chem Mater 8:1667

    Article  CAS  Google Scholar 

  6. Kahraman MV, Kuğu M, Menceloğlu Y, Kayaman-Apohan N, Güngör A (2006) J Non-Cryst Solids 352:2143

    Article  Google Scholar 

  7. Watanabe M, Tamai T (2006) J Polym Sci Pol Chem 44:4736

    Article  CAS  Google Scholar 

  8. Kuraoka K, Ueda T, Sato M, Okamoto T, Yazawa T (2005) J Mat Sci 40:3577

    Article  CAS  ADS  Google Scholar 

  9. Mammeri F, Le Bourhis E, Rozes L, Sanchez C (2005) J Mater Chem 15:3787

    Article  CAS  Google Scholar 

  10. Malzbender J, den Toonder JMJ, Balkenende AR, de With G (2002) Mat Sci Eng R 36:47

    Article  Google Scholar 

  11. Ferchichi A, Calas Etienne S, Smaihi M, Prevot G, Solignac P, Etienne P (2009) J Mat Sci 44:2758

    Article  ADS  Google Scholar 

  12. Mammeri F, Le Bourhis E, Rozes L, Sanchez C (2006) J Eur Ceram Soc 26:259–267

    Article  CAS  Google Scholar 

  13. Zhang X, Hu L, Sun D (2006) Acta Mat 54:5469

    Article  CAS  Google Scholar 

  14. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  ADS  Google Scholar 

  15. Alvarado-Rivera J, Muñoz-Saldaña J, Castro-Beltrán A, Quintero-Armenta JM, Almaral-Sánchez JL, Ramírez-Bon R (2007) Phys Stat Sol C 4:4254

    Article  CAS  Google Scholar 

  16. Almaral-Sánchez JL, López-Gómez M, Ramírez-Bon R, Muñoz-Saldaña J (2006) Adv Tech Mat Mat Proc J (ATM) 8:81

    Google Scholar 

  17. Toselli M, Marini M, Fabbri P, Messori M, Pilati F (2007) J Sol-Gel Sci Technol 43:73

    Article  CAS  Google Scholar 

  18. Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) Surf Coat Technol 99:171

    Article  CAS  Google Scholar 

  19. Fischer-Cripps AC (2004) Nanoindentation, mechanical engineering series, 2nd edn. Springer, New York

    Google Scholar 

  20. Gu G, Zhang Z, Dang H (2004) Appl Surf Sci 221:129

    Article  CAS  ADS  Google Scholar 

  21. Avila-Herrera CA, Gómez-Guzmán O, Almaral-Sánchez JL, Yáñez-Limón JM, Muñoz-Saldaña J, Ramírez-Bon R (2006) J Non-Cryst Solids 352:3561

    Article  CAS  ADS  Google Scholar 

  22. Almaral-Sánchez JL, Rubio E, Mendoza-Galván A, Ramírez-Bon R (2005) J Phys Chem Solids 60:1660

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramírez-Bon.

Additional information

J. Muñoz-Saldaña is on sabbatical leave at Centro de Investigación en Materiales Avanzados y Laboratorio Nacional de Nanotecnología-Chihuahua Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109 Chihuahua, Mexico

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado-Rivera, J., Muñoz-Saldaña, J. & Ramírez-Bon, R. Nanoindentation testing of SiO2-PMMA hybrid films on acrylic substrates with variable coupling agent content. J Sol-Gel Sci Technol 54, 312–318 (2010). https://doi.org/10.1007/s10971-010-2196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2196-7

Keywords

Navigation