Skip to main content
Log in

Sol–gel derived hybrid coatings for the improvement of scratch resistance of polyethylene

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid materials were prepared through the sol–gel approach starting from tetraethoxysilane (TEOS), as silica precursor, and triethoxysilane terminated polymers; before gelling the solutions were applied to polyethylene (PE) films and slabs by spin-coating, without any previous surface pre-treatment of the substrate, and finally the coatings were thermally cured at 60 °C for 24 h. Among the various polymers used to prepare the coatings, only polyethylene-b-poly(ethylene glycol) copolymers gave good results in terms of adhesion to the PE substrates, and hybrid coatings with different organic–inorganic ratios were prepared. As suggested by visual inspection and SEM investigation, and confirmed by the critical loads derived from scratch tests, a good adhesion of the coating to the PE substrates was obtained, probably due to the presence of PE segments in the organic phase of the coating. Transparency as well as SEM and DSC data were in agreement with the formation of a nanostructured hybrid coating, with a high level of interpenetration between organic and inorganic domains. It was also observed that these hybrid coatings are able to improve significantly the scratch resistance and slightly increase the wettability with respect to uncoated PE. This approach to the surface-properties modification of PE appears as a simple and convenient method for the functionalization of PE substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mascia L (1995) Trends Polym Sci 3(2):61

    CAS  Google Scholar 

  2. Wen J, Wilkes GL (1996) Chem Mater 8(8):1667

    Article  CAS  Google Scholar 

  3. Yano S, Iwata K, Kurita K (1998) Mater Sci Eng C: Biomimetic Mater Sens Syst C6(2,3):75

    CAS  Google Scholar 

  4. Sanchez C, Labeau B, Ribot F, In M (2000) J Sol-Gel Sci Technol 19(1–3):31

    Article  CAS  Google Scholar 

  5. Simon PF, Ulrich R, Spiess HW, Wiesner U (2001) Chem Mater 13:3464

    Article  CAS  Google Scholar 

  6. Schottner G (2001) Chem Mater 13:3422

    Article  CAS  Google Scholar 

  7. Uhlmann DR, Teowee G (1998) J Sol-Gel Sci Technol 13:153

    Article  CAS  Google Scholar 

  8. Sakka S (2004) In: Sakka S (ed) Handbook of sol-gel science and technology: III application of sol-gel technolog. Kluwer Academic Publishers, Boston

    Google Scholar 

  9. Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15(35–36):3559

    Article  CAS  Google Scholar 

  10. Mackenzie JD, Bescher E (2003) J Sol-Gel Sci Technol 27:7

    Article  CAS  Google Scholar 

  11. Wouters MEL, Wolfs DP, Van der Linde MC, Hovens JHP, Tinnemans AHA (2004) Prog Org Coat 51(4):312

    Article  CAS  Google Scholar 

  12. Kunrong Z, Soucek MD (2004) Macromol Chem Phys 205(15):2032

    Article  Google Scholar 

  13. Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S (2003) Surf Coat Int Part B Coat Trans 86(B3):181

    CAS  Google Scholar 

  14. Li C, Jordens K, Wilkes GL (2000) Wear 242(1–2):152

    Article  CAS  Google Scholar 

  15. Wen J, Vasudevan VJ, Wilkes GL (1995) J Sol-Gel Sci Technol 5(2):115

    Article  CAS  Google Scholar 

  16. Amberg-Schwab S, Hoffmann M, Bader H, Gessler M (1998) J Sol-Gel Sci Technol 13(1–3):141

    Article  CAS  Google Scholar 

  17. Haas KH, Amberg-Schwab S, Rose K, Schottner G (1999) Surf Coat Technol 111:72

    Article  CAS  Google Scholar 

  18. Amberg-Schwab S, Katschorek H, Weber U, Hoffmann M (2000) J Sol-Gel Sci Technol 19(1–3):125

    Article  CAS  Google Scholar 

  19. Amberg-Schwab S, Katschorek H, Weber U, Burger A, Hansel R, Steinbrecher B, Harzer D (2003) J Sol-Gel Sci Technol 26:699

    Article  CAS  Google Scholar 

  20. Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S, Pasquali L, Nannarone S (2004) Polymer 45(3):805

    Article  CAS  Google Scholar 

  21. Ipbal G (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 1. American Scientific Publisher, Valencia, USA, p 269

  22. Marini M, De Niederhausern S, Iseppi R, Bondi M, Toselli M, Pilati F, in press, doi:10.1021/bm060721b

  23. Fabbri P, Messori M, Montecchi M, Nannarone S, Pasquali L, Pilati F, Tonelli C, Toselli M (2006) Polymer 47(4):1055

    Article  CAS  Google Scholar 

  24. Lee S-Y, Lee J-D, Yang S-M (1999) J Mater Sci 34(6):1233

    Article  Google Scholar 

  25. Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) Thin Solid Films 359:1

    Article  CAS  Google Scholar 

  26. Tian D, Dubois Ph, Jerome R (1997) J Polym Sci Part A Polym Chem 35:2295

    Article  CAS  Google Scholar 

  27. Tian D, Blacher S, Dubois Ph, Jerome R (1998) Polymer 39(4):855

    Article  CAS  Google Scholar 

  28. Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S, Pasquali L, Nannarone S (2003) Polymer 44(16):4463

    Article  CAS  Google Scholar 

  29. Kricheldorf HR, Hachmann-Thiessen H (2005) Polymer 46(26):12103

    Article  CAS  Google Scholar 

  30. Sun L, Liu YX, Zhu L, Hsiao BS, Avila-Orta CA (2004) Polymer 45(24):8181

    Article  CAS  Google Scholar 

  31. Campbell C, Viras K, Richardson MJ, Masters AJ, Both C (1993) Makromolekulare Chemie 194(3):799

    Article  CAS  Google Scholar 

  32. Wunderlich B (1990) Thermal analysis. Academic Press, New York

    Google Scholar 

  33. Messori M, Toselli M, Pilati F, Fabbri P, Pasquali L, Montecchi M, Nannarone S (2005) Surf Coat Int Part B Coat Trans 88(B4):243

    CAS  Google Scholar 

Download references

Acknowledgements

The Italian MIUR (PRIN 2004, Prot. 20040303 04) is gratefully acknowledged for financial support. The work is also partially supported by PRRIITT (Regione Emilia Romagna), Net-Lab “Surface & Coatings for Advanced Mechanics and Nanomechanics” (SUP&RMAN). The authors also thank Dr. Marco Geppi of the Pisa University for the recording and discussion of solid state NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Toselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toselli, M., Marini, M., Fabbri, P. et al. Sol–gel derived hybrid coatings for the improvement of scratch resistance of polyethylene. J Sol-Gel Sci Technol 43, 73–83 (2007). https://doi.org/10.1007/s10971-007-1560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1560-8

Keywords

Navigation