Skip to main content
Log in

Preparation and characterization of nanocomposite ZnO–Ag thin film containing nano-sized Ag particles: influence of preheating, annealing temperature and silver content on characteristics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocomposite ZnO–Ag thin film containing nano-sized Ag particles have been grown on glass substrate by spin-coating technique using zinc acetate dihydrate as starting precursor in 2-propanol as solvent and monoethanolamine as stabilizer. Silver nanoparticles were added in the ZnO sol using silver nitrate dissolved in ethanol-acetonitrile. Their structural, electrical, crystalline size and optical properties were investigated as a function of preheating, annealing temperature and silver content. The results indicated that the crystalline phase was increased with increase of annealing temperature up to 550 °C at optimum preheating temperature of 275 °C. Thermal gravimetric differential thermal analysis results indicated that the decomposition of pure ZnO and nanocomposite ZnO–Ag precursors occurred at 225 and 234 °C, respectively with formation of ZnO wurtzite crystals. The scanning electron microscopy and atomic force microscopy revealed that the surface structure (the porosity and grain size) of the ZnO–Ag thin film (the film thickness is about 379 nm) was changed compared to pure ZnO thin film. The result of transmission electron microscopy showed that Ag particles were about 5 nm and ZnO particles 58 nm with uniform silver nanoclusters. Optical absorption results indicated that optical absorption of ZnO–Ag thin films decreased with increase of annealing temperature. Nanocomposite ZnO–Ag thin films with [Ag] = 0.068 M and [Ag] = 0.110 M showed an intense absorption band, whose maximum signals appear at 430 nm which is not present in pure ZnO thin films. The result of X-ray photoelectron spectroscopy revealed that the binding energy of Ag 3d5/2 for ZnO–Ag shifts remarkably to the lower binding energy compared to the pure metallic Ag due to the interaction between Ag and ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alammar T, Mudring AV (2009) J Mater Sci 44:3218

    Article  CAS  ADS  Google Scholar 

  2. Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM (2001) J Phys Chem B 105:1026

    Article  CAS  Google Scholar 

  3. Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan N (2005) J Catal 232:424

    Article  CAS  Google Scholar 

  4. Wu JJ, Tseng CH (2006) Appl Catal B 66:51

    Article  CAS  Google Scholar 

  5. Lee MS, Hong SS, Mohseni M (2005) J Mol Catal A Chem 242:135

    Article  CAS  Google Scholar 

  6. Iliev V, Tomova D, Todorovska R, Oliver D, Petrov L, Todorovsky D, Unova-Bujnova M (2006) Appl Catal A 313:115

    Article  CAS  Google Scholar 

  7. Lam SW, Chiang K, Lim TM, Amal R, Low GKC (2007) Appl Catal B 72:363

    Article  CAS  Google Scholar 

  8. Kim HG, Borse PH, Choi W, Lee JS (2005) Angew Chem Int Ed 44:4585

    Article  CAS  Google Scholar 

  9. Hua J, Zheng Q, Zheng Y, Wei K, Lin X (2005) Catal Lett 102:99

    Article  CAS  Google Scholar 

  10. Park WI, Yi GC, Kim M, Pennycook SJ (2003) Adv Mater 15:256

    Google Scholar 

  11. Kamat PV (1993) Chem Rev 93:267

    Article  CAS  Google Scholar 

  12. Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photocatalysis. Reidel, Dordrecht

    Google Scholar 

  13. Chiavello M (1988) Photocatalysis and environment, trends and applications. Reidel, Dordrecht

    Google Scholar 

  14. Xu F, Du GH, Halasa M, Su BL (2006) Chem Phys Lett 426:129

    Article  CAS  ADS  Google Scholar 

  15. Pal B, Sharon M (2002) Mater Chem Phys 76:82

    Article  CAS  Google Scholar 

  16. Lim ZQ, Xiong YJ, Xie Y (2003) Inorg Chem 42:8105

    Article  Google Scholar 

  17. Liu B, Yu SH, Zhang F, Li L, Zhang Q, Ren L, Jiang K (2004) J Phys Chem B 108:4338

    Article  CAS  Google Scholar 

  18. Zhang H, Ma XY, Xu J, Niu JJ, Yang DR (2003) Nanotechnology 14:423

    Article  CAS  ADS  Google Scholar 

  19. Yan HQ, He RR, Pham J, Yang PD (2003) Adv Mater 15:402

    Article  CAS  Google Scholar 

  20. Oliveira APA, Hochepied JF, Grillon F, Berger MH (2003) Chem Mater 15:3202

    Article  CAS  Google Scholar 

  21. Sahu DR (2007) Microelectronics J 38:1252

    Article  CAS  Google Scholar 

  22. Lee HW, Choi BG, Shim KB, Oh YJ (2005) J Ceram Proc Res 6:880

    Google Scholar 

  23. Norton DP, Heo YW, Ivill MP, Ip K, Pearton SJ, Chisholm MF, Steiner T (2004) Mater Today 34:23

    Google Scholar 

  24. Jeong SH, Lee JW, Lee SB, Boo JH (2003) Surf Coat Technol 174:187

    Article  Google Scholar 

  25. Chang JF, Kuo HH, Leu IC, Hon MH (2002) Sens Actuators B Chem 84:258

    Article  Google Scholar 

  26. Zhang DH, Yang TL (2000) J Appl Surf Sci 43:158

    Google Scholar 

  27. Shchukin DG, Ustinovich E, Sviridov DV, Lvov YM, Sukhorukov GB (2003) Photochem Photobiol Sci 2:975

    Article  CAS  PubMed  Google Scholar 

  28. Sakamoto M, Fujistuka M, Majima TJ (2009) Photochem Photobiol C Rev 10:33

    Article  CAS  Google Scholar 

  29. Ahn BD, Kang HS, Kim JH, Kim GH, Chang HW, Lee SY (2006) J Appl Phys 100:093701

    Article  ADS  Google Scholar 

  30. Martin-Palma RJ, Gago R, Vinnichenko M, Martinez-Durat JM (2004) J Phys D Appl Phys 37:1554

    Article  CAS  ADS  Google Scholar 

  31. Habibi MH, Talebian N (2006) Thin Solid Films 515:1461

    Article  CAS  ADS  Google Scholar 

  32. Habibi MH, Talebian N (2007) Dyes Pigm 73:186

    Article  CAS  Google Scholar 

  33. Habibi MH, Talebian N, Choi JH (2007) Dyes Pigm 73:103

    Article  CAS  Google Scholar 

  34. Habibi MH, Nasr-Esfahani M, Egerton TA (2007) J Mater Sci 42:6027

    Article  CAS  ADS  Google Scholar 

  35. Habibi MH, Nasr-Esfahani M (2007) Dyes Pigm 75:714

    Article  CAS  Google Scholar 

  36. Habibi MH, Nasr-Esfahani M (2007) Inter J Photoenergy 89759

  37. Habibi MH, Khaledi-Sardashti M (2009) J Adv Oxid Tech 12:231

    CAS  Google Scholar 

  38. Habibi MH, Khaledi Sardashti M (2008) J Iran Chem Soc 5:603

    CAS  Google Scholar 

  39. Habibi MH, Khaledi Sardashti M (2008) Z Naturforsch 63a:440

    Google Scholar 

  40. Habibi MH, Khaledi Sardashti M (2008) J Nanomater 356765

  41. Lengeler B, Huppauff MH (1993) J Anal Chem USSR 346:155

    CAS  Google Scholar 

  42. Chason E, Mayer TM (1997) Crit Rev Solid State Mater Sci 22:1

    Article  CAS  Google Scholar 

  43. Kim YS, Tai WP, Shu SJ (2005) Thin Solid Films 491:153

    Article  CAS  ADS  Google Scholar 

  44. Copuroglu MLH, Koh K, O’Brien S, Crean GM (2009) J Sol-Gel Sci Technol 52:432

    Article  CAS  Google Scholar 

  45. Zhou G, Deng J (2007) Mater Sci Semicond Process 10:90

    Article  CAS  Google Scholar 

  46. Georgekutty R, Seery MK, Pillai SC (2008) J Phys Chem C 112:13563

    Article  CAS  Google Scholar 

  47. Johnson PB, Christy RW (1972) Phys Lett 157:569

    Google Scholar 

  48. Kozuka H (1997) Sol-Gel Optics IV SPIE 304:3136

    Google Scholar 

  49. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  50. Fujihara S, Naito H, Tada M, Kimura T (2001) Scr Mater 44:2031

    Article  CAS  Google Scholar 

  51. Doremus RH (1965) J Chem Phys 42:414

    Article  CAS  ADS  Google Scholar 

  52. Peng W, Qu S, Cong G, Wang Z (2006) Cryst Growth Des 6:1518

    Article  CAS  Google Scholar 

  53. Moudler JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, MN

    Google Scholar 

  54. Jing L, Xu Z, Shang J, Sun X, Cai W, Guo H (2002) Mater Sci Eng A 332:356

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Center of Excellency (Chemistry), University of Isfahan for partial financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Habibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, M.H., Sheibani, R. Preparation and characterization of nanocomposite ZnO–Ag thin film containing nano-sized Ag particles: influence of preheating, annealing temperature and silver content on characteristics. J Sol-Gel Sci Technol 54, 195–202 (2010). https://doi.org/10.1007/s10971-010-2177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2177-x

Keywords

Navigation