Skip to main content
Log in

Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly homogeneous transparent titania gels have been successfully prepared from titanium alkoxide by a sol–gel method utilizing chelating agent, ethyl acetylacetate (EtAcAc), in the presence of strong acid anions. Only catalytic amount of a strong acid anion suppress the rapid hydrolysis of titanium alkoxide by blocking the nucleophilic attack of HO and H2O, and the resultant moderate sol–gel reactions thus afford homogeneous gelation, leading to transparent monolithic titania gels. Gelation time can be widely controlled by changing amounts of water, chelating agent and salt. The ability of salts to suppress the too abrupt sol–gel reactions is strongly dependent on the electronegativity of anions and valence of cations. With employing NH4NO3 as a suppressing electrolyte, the obtained titania gels can be converted to pure TiO2 by simple washing and heat-treatment, and transformations to anatase and rutile structures were found to start at 400 and 600 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Anderson MA, Gieselmann MJ, Xu Q (1988) J Memb Sci 39:243–258

    Article  CAS  Google Scholar 

  2. Kurganov A, Trüdinger U, Isaeva T, Unger K (1996) Chromatographia 42:217–222

    Article  CAS  Google Scholar 

  3. Buchmeiser MR (2001) J Chromatogr A 918:233–266

    Article  CAS  PubMed  Google Scholar 

  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  PubMed  Google Scholar 

  5. Khan SUM, Al-Shahry M, Ingler WB (2002) Science 297:2243–2245

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  ADS  Google Scholar 

  8. O’Regan B, Gratzel M (1991) Nature 353:737–740

    Article  ADS  Google Scholar 

  9. Carp O, Huisman CL, Reller A (2004) Progr Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  10. Sakai N, Ebina Y, Takada K, Sasaki T (2004) J Am Chem Soc 126:5851–5858

    Article  CAS  PubMed  Google Scholar 

  11. Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Graetzel M (2004) Chem Mater 16:477–485

    Article  CAS  Google Scholar 

  12. Kim HS, Gilmer DC, Campbell SA, Polla DL (1996) Appl Phys Lett 69:3860–3862

    Article  CAS  ADS  Google Scholar 

  13. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Nature 388:431–432

    Article  CAS  ADS  Google Scholar 

  14. Yu JC, Zhang L, Yu J (2002) Chem Mater 14:4647–4653

    Article  CAS  Google Scholar 

  15. Hague DC, Mayo MJ (1994) J Am Ceram Soc 77:1957–1960

    Article  Google Scholar 

  16. Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Chem Lett 24:841–842

    Article  Google Scholar 

  17. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) J Am Ceram Soc 83:229–231

    Article  CAS  Google Scholar 

  18. Kajihara K, Nakanishi K, Tanaka K, Hirao K, Soga N (1998) J Am Ceram Soc 81:2670–2676

    Article  CAS  Google Scholar 

  19. Yoldas BE (1980) J Non-Cryst Solids 38:81–86

    Article  ADS  Google Scholar 

  20. Mariscal R, Palacios JM, Galan-Fereres M, Fierro JLG (1994) Appl Catal A 116:205–219

    Article  CAS  Google Scholar 

  21. Kim WI, Hong IK (2003) J Ind End Chem 9:728–734

    CAS  Google Scholar 

  22. Lee JH, Choi SY, Kim CE (1997) J Mater Sci 32:3577–3585

    Article  CAS  Google Scholar 

  23. Yoldas BE (1986) J Mater Sci 21:1087–1092

    Article  CAS  ADS  Google Scholar 

  24. Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y (1994) J Mater Sci 29:1617–1622

    Article  CAS  ADS  Google Scholar 

  25. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Chem Mater 18:6069–6074

    Article  CAS  Google Scholar 

  26. Yao B, Zhang L (1999) J Mater Sci 34:5983–5987

    Article  CAS  Google Scholar 

  27. Mir LE, Amlouk A, Elaloui E, Saadoun M, Pierre AC (2008) Mater Sci Eng B 146:69–73

    Article  CAS  Google Scholar 

  28. Moriguchi I, Maeda H, Teraoka Y, Kagawa S (1997) Chem Mater 9:1050–1057

    Article  CAS  Google Scholar 

  29. Arconada N, Durán A, Suárez S, Portela R, Coronado JM, Sánchez B, Castro Y (2009) Appl Catal B 86:1–7

    Article  CAS  Google Scholar 

  30. Wellbrock U, Beier W, Frischat GH (1992) J Non-Cryst Solids 147:350–355

    Article  ADS  Google Scholar 

  31. Matijević E, Scheiner P (1978) J Colloid Interface Sci 63:509–524

    Article  Google Scholar 

  32. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F, Mirdamadi S (2008) J Mater Sci 43:1723–1729

    Article  CAS  ADS  Google Scholar 

  33. Yamada N, Yoshinaga I, Katayama S (2000) J Sol-Gel Sci Technol 17:123–130

    Article  CAS  Google Scholar 

  34. Kallala M, Sanchez C, Cabane B (1993) Phys Rev E 48:3692–3704

    Article  CAS  ADS  Google Scholar 

  35. Blanchard J, In M, Schaudel B, Sanchez C (1998) Eur J Inorg Chem 1115–1127

  36. Matijević E, Budnik M, Meites L (1977) J Colloid Interface Sci 61:302–311

    Article  Google Scholar 

  37. Noda LK, de Almeida RM, Probst LFD, Gonçalves NS (2005) J Mol Catal A 225:39–46

    Article  CAS  Google Scholar 

  38. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Langmuir 16:2632–2641

    Article  CAS  Google Scholar 

  39. Calza P, Pelizzeti E, Mogyorósi K, Kun R, Dékány I (2007) Appl Catal 72:314–321

    Article  CAS  Google Scholar 

  40. Brinker CJ, Scherer GW (1990) Sol-Gel Science. Academic Press Inc, New York

    Google Scholar 

  41. Allred AL, Rochow EG (1958) J Inorg Nucl Chem 5:264–268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Grant-in-Aid for Scientific Research (No. 20750177 for K. K. and No. 20350094 for K. N.) and the Global COE Program “International Center for Integrated Research and Advanced Education in Materials Science” (No. B-09) both from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, are acknowledged. Also, partly supported by a Grant for Practical Application of University R&D Results under the Matching Fund Method from New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, G., Kanamori, K., Nakanishi, K. et al. Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts. J Sol-Gel Sci Technol 53, 59–66 (2010). https://doi.org/10.1007/s10971-009-2056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2056-5

Keywords

Navigation