Skip to main content
Log in

Polyurea based aerogel for a high performance thermal insulation material

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Less fragile lightweight nanostructured polyurea based organic aerogels were prepared via a simple sol–gel processing and supercritical drying method. The uniform polyurea wet gels were first prepared at room temperature and atmospheric pressure by reacting different isocyanates with polyamines using a tertiary amine (triethylamine) catalyst. Gelation kinetics, uniformity of wet gel, and properties of aerogel products were significantly affected by both target density (i.e., solid content) and equivalent weight (EW) ratio of the isocyanate resin and polyamine hardener. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet polyurea gels to afford nanoporous aerogels. The thermal conductivity values of polyurea based aerogel were measured at pressures from ambient to 0.075 torr and at temperatures from room temperature to −120 °C under a pressure of 8 torr. The polyurea based aerogel samples demonstrated high porosities, low thermal conductivity values, hydrophobicity properties, relatively high thermal decomposition temperature (~270 °C) and low degassing property and were less dusty than silica aerogels. We found that the low thermal conductivities of polyurea based aerogels were associated with their small pore sizes. These polyurea based aerogels are very promising candidates for cryogenic insulation applications and as a thermal insulation component of spacesuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kistler SS (1931) Nature 127:741. doi:10.1038/127741a0

    Article  ADS  CAS  Google Scholar 

  2. Kistler SS (1932) J Phys Chem 36:52. doi:10.1021/j150331a003

    Article  CAS  Google Scholar 

  3. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22

    Article  Google Scholar 

  4. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243. doi:10.1021/cr0101306

    Article  PubMed  CAS  Google Scholar 

  5. Pajonk GM (2003) Colloid Polym Sci 281:637. doi:10.1007/s00396-002-0814-9

    Article  CAS  Google Scholar 

  6. Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Dry Technol 21:593. doi:10.1081/DRT-120019055

    Article  CAS  Google Scholar 

  7. Akimov YK (2003) Instrum Exp Tech 46:287. doi:10.1023/A:1024401803057

    Article  CAS  Google Scholar 

  8. LeMay JD, Hopper RW, Hrubesh LW, Pekala RW (1990) MRS Bull 15(12):19

    Google Scholar 

  9. Schaefer D (1994) MRS Bull 19(4):49

  10. Hrubesh LW, Poco JF (1995) J Non-Cryst Solids 188:46. doi:10.1016/0022-3093(95)00028-3

    Article  ADS  CAS  Google Scholar 

  11. Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364. doi:10.1016/S0022-3093(98)00054-4

    Article  ADS  CAS  Google Scholar 

  12. Fricke J, Emmerling A (1998) J Sol–Gel Sci Technol (Paris) 13:299

    Article  CAS  Google Scholar 

  13. www.aerogel.com

  14. Pekala RW, Schaefer DW (1993) Macromolecules 26:5487. doi:10.1021/ma00072a029

    Article  CAS  ADS  Google Scholar 

  15. Pekala RW (1989) J Mater Sci 24:3221. doi:10.1007/BF01139044

    Article  CAS  ADS  Google Scholar 

  16. Pekala RW, Kong FM (1989) Polymer Prepr 30:221

    CAS  Google Scholar 

  17. Ward RL, Pekala RW (1990) Polymer Prepr 31:167

    CAS  Google Scholar 

  18. Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67. doi:10.1016/0022-3093(90)90324-F

    Article  ADS  CAS  Google Scholar 

  19. Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) J Non-Cryst Solids 145:90. doi:10.1016/S0022-3093(05)80436-3

    Article  ADS  CAS  Google Scholar 

  20. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Science 255:971. doi:10.1126/science.255.5047.971

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) J Non-Cryst Solids 188:226. doi:10.1016/0022-3093(95)00191-3

    Article  ADS  CAS  Google Scholar 

  22. Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644. doi:10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#

    Article  CAS  Google Scholar 

  23. Fischer F, Rigarcci A, Pirad R, Berthon-Fabry S, Achard P (2006) Polymer (Guildf) 47:7636. doi:10.1016/j.polymer.2006.09.004

    Article  CAS  Google Scholar 

  24. Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36. doi:10.1016/S0022-3093(98)00103-3

    Article  ADS  CAS  Google Scholar 

  25. Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) J Non-Cryst Solids 225:64. doi:10.1016/S0022-3093(98)00010-6

    Article  ADS  CAS  Google Scholar 

  26. Lee JK, Shannon W, Mesham M, Gould GL (2006) NASA SBIR Phase II Contract No. NNJ04JA22C Final Report, March

  27. Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372. doi:10.1016/j.jnoncrysol.2004.06.049

    Article  ADS  CAS  Google Scholar 

  28. Lee JK, Gould GL (2007) J Sol–Gel Sci Technol (Paris) 44:29

    Article  CAS  Google Scholar 

  29. Kramer DP, McNeil DC, Howell EI, Gembarovic J, Taylor RE (2002) Proceedings of the 37th intersociety energy conversion engineering conference (IECEC), IEEE, Catalog #02CH37298, July 2002, paper 20089

  30. Bittle RR, Taylor RE (1984) J Am Ceram Soc 67:186

    Article  Google Scholar 

  31. Lee JK, Gould GL (2005) J Sol–Gel Sci Technol (Paris) 34:281

    Article  CAS  Google Scholar 

  32. Hummer E, Rettelbach T, Lu X, Fricke J (1993) Thermochim Acta 218:269. doi:10.1016/0040-6031(93)80428-D

    Article  Google Scholar 

  33. Lee OJ, Lee KH, Kim SY, Yoo KP (2002) J Non-Cryst Solids 298:287. doi:10.1016/S0022-3093(01)01041-9

    Article  ADS  CAS  Google Scholar 

  34. Scheuerpflug P, Morper HJ, Neubert G, Fricke J (1991) J Phys D Appl Phys 24:1395. doi:10.1088/0022-3727/24/8/025

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgment

This work was conducted by the financial support of the United States National Aeronautics and Space Administration (NASA), SBIR Contract No. NNJ04JA22C. The authors are grateful to Mr. Max Mesham, Ms. Geeta Bhakhari, and Mr. Nathan Bhobho for their helps in preparing samples and also, to Ms. Sara Rosenberg, Dr. Jenifer Marchesi, and Dr. Shannon White for their valuable helps. The authors would like to thank Ms. Evelyn S. Orndoff and Mr. Luis A. Trevino of NASA for their continuous supports for this work. The authors are also grateful to TPRL for thermal conductivity measurement at different pressures and temperatures and Dow Corning Analytical Lab for SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je Kyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Gould, G.L. & Rhine, W. Polyurea based aerogel for a high performance thermal insulation material. J Sol-Gel Sci Technol 49, 209–220 (2009). https://doi.org/10.1007/s10971-008-1861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1861-6

Keywords

Navigation