Skip to main content
Log in

Polydicyclopentadiene based aerogel: a new insulation material

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lightweight polydicyclopentadiene (pDCPD) based aerogels were developed via a simple sol-gel processing and supercritical drying method. The uniform pDCPD wet gels were first prepared at room temperature and atmospheric pressure through ring opening metathesis polymerization (ROMP) incorporating homogeneous ruthenium catalyst complexes (Grubbs catalyst). Gelation kinetics were significantly affected by both catalyst content and target density (i.e., solid content), while gel solvents also played important role in determining the appearance and uniformity of wet gel and aerogel products. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet pDCPD gels to afford nanoporous aerogel solid. A variety of pDCPD based aerogels were synthesized by varying target density, catalyst content, and solvent and were compared with their xerogel analogs (obtained by ambient pressure solvent removal) for linear shrinkage and thermal conductivity value (1 atm air, 38 °C mean temperature). Target density played a key role in determining porosity and thermal conductivity of the resultant pDCPD aerogel. Differential scanning calorimetery (DSC) demonstrated that the materials as produced were not fully-crosslinked. The pDCPD based aerogel monoliths demonstrated high porosities, low thermal conductivity values, and inherent hydrophobicity. These aerogel materials are very promising candidates for many thermal and acoustic insulation applications including cryogenic insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.osha.gov/SLTC/formaldehyde/recognition.html

References

  1. Kistler SS (1931) Nature 127:741

    CAS  Google Scholar 

  2. Kistler SS (1932) J Physical Chem 36:52

    Article  CAS  Google Scholar 

  3. LeMay JD, Hopper RW, Hrubesh LW, Pekala RW, MRS Bulletin, December 1990, p 19

  4. Schaefer D, MRS Bulletin, April 1994, p 49

  5. Hrubesh LW, Poco JF (1995) J Non-Cryst Solids 188:46

    Article  CAS  Google Scholar 

  6. Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364

    Article  CAS  Google Scholar 

  7. Fricke J, Emmerling A (1998) J Sol-Gel Sci Tech 13:299

    Article  CAS  Google Scholar 

  8. Hüsing N, Schubert U (1998) Angrew Chem Int Ed 37:22

    Article  Google Scholar 

  9. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243

    Article  CAS  Google Scholar 

  10. Akimov YK (2003) Instrum Exp Tech 46:287

    Article  CAS  Google Scholar 

  11. Pajonk GM (2003) Colloid Polym Sci 281:637

    Article  CAS  Google Scholar 

  12. Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying Technol 21:593

    Article  CAS  Google Scholar 

  13. Pekala RW, Schaefer DW (1993) Macromolecules 26:5487

    Article  CAS  Google Scholar 

  14. Pekala RW (1989) J Mater Sci 24:3221

    Article  CAS  Google Scholar 

  15. Pekala RW, Kong FM (1989) Polym Prepr 30:221

    CAS  Google Scholar 

  16. Ward RL, Pekala RW (1990) Polym Prepr 31:167

    CAS  Google Scholar 

  17. Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67

    Article  CAS  Google Scholar 

  18. Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) J Non-Cryst Solids 145:90

    Article  CAS  Google Scholar 

  19. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Science 255:971

    Article  CAS  Google Scholar 

  20. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) J Non-Cryst Solids 188:226

    Article  CAS  Google Scholar 

  21. Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372

    Article  CAS  Google Scholar 

  22. Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36

    Article  CAS  Google Scholar 

  23. Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) J Non-Cryst Solids 225:64

    Article  CAS  Google Scholar 

  24. Fischer F, Rigarcci A, Pirad R, Berthon-Fabry S, Achard P (2006) Polymer 47:7636

    Article  CAS  Google Scholar 

  25. Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644

    Article  CAS  Google Scholar 

  26. Hine PJ, Leejarkpai T, Khosravi E, Duckett RA, Feast WJ (2001) Polymer 42:9413

    Article  CAS  Google Scholar 

  27. Kessler MR, White SR (2002) J Polym Sci Part A: Polym Chem 40:2373

    Article  CAS  Google Scholar 

  28. Furstner A (2000) Angew Chem Int Ed 39:3012

    Article  CAS  Google Scholar 

  29. Grubbs RH (2004) Tetrahedron 60:7117

    Article  CAS  Google Scholar 

  30. Lee JK, Mesham M, Chittick H, Gould GL, DARPA SBIR Phase I Contract No. W31P4Q-04-C-R087, Final Report, September (2004)

  31. Martina AD, Hilborn JG, Mu1hlebach A (2002) Macromolecules 33:2916

    Article  Google Scholar 

  32. Davidson TA, Wagener KB (1998) J Mol Catal A 133:67

    Article  CAS  Google Scholar 

  33. Lee JK, Gould GL (2005) J Sol-Gel Sci Tech 34:281

    Article  CAS  Google Scholar 

  34. Hummer E, Rettelbach T, Lu X, Fricke J (1993) Thermochimica Acta 218:269

    Article  Google Scholar 

  35. Brinker CJ, Scherer GW (1990) Sol-Gel Science Ch 9. Academic Press, San Diego

    Google Scholar 

  36. Program Manuals of Statisca, Vol. IV Industrial statistics, Experimental design, StatSoft (1995), p 4254

  37. Abadie MJ, Dimonie M, Couve C, Dragutan V (2000) Eur Polym J 36:1213

    Article  CAS  Google Scholar 

  38. Grubbs RH, Woodson CS, USP 6,020,443 and USP 5728785

  39. Paul A, Clyde O (1997) Analytical methods in fine particle technology Ch 3. Micrometrics Instrument, Norcross GA

    Google Scholar 

  40. Lee OJ, Lee KH, Kim SY, Yoo KP (2002) J Non-Cryst Solids 298:287

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was conducted by the financial support of the United States Defense Advanced Research Projects Agency (DARPA), SBIR Contract No. W31P4Q-05-C-0231. The authors are grateful to Mr. Max Mesham, Ms. Geeta Bhakhari, and Mr. Nathan Bhobho for their helps in preparing samples and also, to Ms. Sara Rosenberg, Dr. Shannon White, and Dr. Jeffrey Boehme for their valuable helps. The authors would like to thank Dr. Karen Wood in DARPA for her continuous supports for this work. The authors are also grateful to Dow Corning Analytical Lab for SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je Kyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Gould, G.L. Polydicyclopentadiene based aerogel: a new insulation material. J Sol-Gel Sci Technol 44, 29–40 (2007). https://doi.org/10.1007/s10971-007-1598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1598-7

Keywords

Navigation