Skip to main content
Log in

In situ formed silica nanofiber reinforced UV-curable phenylphosphine oxide containing coatings

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of UV-curable nanocomposite coating materials were prepared by sol–gel technique from tetraethoxysilane (TEOS), methacryloxypropyltrimethoxysilane (MAPTMS) in the presence of urethane acrylate resin based on polyethylene glycol 400 (PEG400). The sol–gel precursor content in the hybrid coatings was varied from 0 to 30 wt.%. In addition, acrylated phenylphosphine oxide oligomer (APPO) is replaced with urethane acrylate resin in order to investigate its effect on the nanocomposite property. The physical and mechanical properties such as; gel content, hardness, adhesion, gloss, impact strength as well as tensile strength were examined. Results from these measurements showed that all the properties of the hybrid coatings improved effectively by gradual increase in sol–gel precursor and APPO resin content. The real time infrared technique was used to follow the degree of acrylic double bond conversion. The thermal stabilities of the UV-cured nanocomposites were investigated by thermogravimetric analysis. The results revealed that the addition of sol–gel precursor and APPO oligomer into the organic network leads to an improvement in the thermal and flame resistance properties of the hybrid materials. It was also determined that the APPO containing hybrid coating with 20 wt.% silica content gave higher char yield than the coating without APPO. It is a desirable achievement to improve simultaneously both the flame retardancy and mechanical properties of a protective coating. SEM studies indicated that inorganic particles were dispersed homogenously through the organic matrix. The hybrids were nanocomposite. It was also found that, incorporation of APPO resin might govern the silica organization and this leading to formation of nanofibrillar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu S, Sears MT, Soucek MD, Simonsick WJ (1999) Polymer 40:5675

    Article  CAS  Google Scholar 

  2. Huang HH, Orler B, Wilkes GL (1987) Macromolecules 20:1322

    Article  CAS  Google Scholar 

  3. Haas KH, Walter H, Opin C (1999) Solid State Mater Sci 4:571

    Article  CAS  Google Scholar 

  4. Brinker CJ, Scherer GW (1985) J Non-Cryst Solids 70:301

    Article  CAS  Google Scholar 

  5. Brennan AB, Wikes GL (1991) Polymer 32:733

    Article  CAS  Google Scholar 

  6. Kickelbick G. (2003) Prog Polym Sci 28:114

    Article  Google Scholar 

  7. Qui W, Luo Y, Chen F, Duo Y, Tan H (2003) Polymer 44:5321

    Google Scholar 

  8. Judeinstein P, Sanchez C (1996) J Mater Chem 6:511

    Article  CAS  Google Scholar 

  9. Bakthavatehalam Y, White Car CK (1990) Chem Mater 2:337

    Article  Google Scholar 

  10. Wouters MEL, Wolfs DP, Vander Linde MC, Hovens JHP, Tinnemans AHA (2004) Progr Org Coat 51:312

    Article  CAS  Google Scholar 

  11. Gilberts J, Tinnemans AHA (1998) J Sol–gel Sci Technol 11:153

    Article  CAS  Google Scholar 

  12. Zong Z, He J, Soucek D (2005) Progr Org Coat 53:83–90

    Article  CAS  Google Scholar 

  13. Radhakrishnan S, Pethrick RA (1994) J Appl Polym Sci 51:863

    Article  CAS  Google Scholar 

  14. Boogers JAF, Klaase P, Devlieger JJ, Alkema DPW, Tinnemans AHA (1994) Macromolecules 27:197

    Article  CAS  Google Scholar 

  15. Decker C, Moussa K (1993) J Coat Tech 65:49

    CAS  Google Scholar 

  16. Masson F, Decker C, Jaworek T, Schwalm R (2000) Progr Org Coat 39:115

    Article  CAS  Google Scholar 

  17. Wang GA, Wang CC, Chen CY (2006) Polym Degr Stab 91:2683–2690

    Article  CAS  Google Scholar 

  18. Wang Q, Shi W. (2006) Euro Polym J 42:2261–2269

    Article  CAS  Google Scholar 

  19. Liang H, Shi W (2004) Polym Degr Stab 84:525–532

    Article  CAS  Google Scholar 

  20. Chiang CL, Ma MCC (2002) Euro Polym J 38:2219–2224

    Article  CAS  Google Scholar 

  21. Chiang CL, Ma MCC, Wang FY, Kuan HC. (2003) Euro Polym J 39:825–830

    Article  CAS  Google Scholar 

  22. Wang DY, Ge XG, Wang YZ, Wang C, Qu MH, Zhou Q (2006) Macromol Mater Eng 291:638–645

    Article  CAS  Google Scholar 

  23. Camino G, Tartaglione G, Franche A, Manferti C, Finocchiaro P, Falqui L (2006) Fire Polymers IV: Materials and Concepts for Hazard Prevention ACS Symposium Series 922:21–35

    CAS  Google Scholar 

  24. Karataş S, Hoşgör Z, Menceloğlu Y, Kayaman-Apohan N, Güngör A (2006) J Appl Polym Sci 102:1906–1914

    Article  CAS  Google Scholar 

  25. Kayaman-Apohan N, Demirci R, Çakır M, Güngör A (2005) Rad Phys Chem 73:254–262

    Article  CAS  Google Scholar 

  26. Smith CD, Grubbs H, Webster HF, Güngör A, Wightman J, McGrath JE (1991) High Perform Polym 3:211

    Article  CAS  Google Scholar 

  27. Yılmaz-Inan T, Ekinci E, Yıldız E, Kuyulu A, Gungor A (2001) Macromol Chem and Phys 202:532–540

    Article  Google Scholar 

  28. Kahraman MV, Kuğu M, Menceloğlu Y, Kayaman-Apohan N, Güngör A (2006) J Non Cryst Solids 352:2143–2151

    Article  CAS  Google Scholar 

  29. Karataş S, Kızılkaya C, Kayaman-Apohan N, Güngör A (2007) Progr Org Coat 60:140

    Article  CAS  Google Scholar 

  30. Ni H, Simonsick WJ, Skaja AD, Williams JP, Soucek MD (2000) Progr Org Coat 38:97

    Article  CAS  Google Scholar 

  31. Lee YJ, Gungor A, Yoon TH, McGrath JE (1995) J Adhesion 55:165–177

    Article  CAS  Google Scholar 

  32. Zandi-Zand R, Ershad-Iangroudi A, Rahimi A (2005) J Non Cryst Solids 351:1307–1311

    Article  CAS  Google Scholar 

  33. Wicks ZW, Jones FN, Pappas SP (1975) Org Coat Sci and Tech, vol 1. Wiley, New York

  34. Tasic S, Bozic B, Dunzie B (2004) Prog Org Coat 51:321–328

    Google Scholar 

  35. Subramani S, Choi SW, Lee JY, Kim JH (2007) Polymer 48:4691–4703

    Article  CAS  Google Scholar 

  36. Xu J, Pang W, Shi W (2006) Thin Solid Films 514:69–75

    Article  CAS  Google Scholar 

  37. Huang Z, Shi W (2006) Euro Polym J 42:1506–1515

    Article  CAS  Google Scholar 

  38. Wang H, Xu P, Meng S, Zhong W, Du W, Du Q (2006) Polym Degr Stab 91:1455

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Marmara University, Commission of Scientific Research Project under grant FEN-YLS-100105–0053 and also partially supported by TUBITAK Research Project under grant 106T083. The authors would like to thank Assoc. Prof. Dr. Yusuf Menceloğlu and Burçin Yıldız for 29Si-NMR and 31P-NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilhan Kayaman Apohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apohan, N.K., Karataş, S., Bilen, B. et al. In situ formed silica nanofiber reinforced UV-curable phenylphosphine oxide containing coatings. J Sol-Gel Sci Technol 46, 87–97 (2008). https://doi.org/10.1007/s10971-008-1709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1709-0

Keywords

Navigation