Skip to main content
Log in

Glycol-modified organosilanes in the synthesis of inorganic-organic silsesquioxane and silica monoliths

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly porous inorganic-organic hybrid monoliths with mesopores in a macroporous network have been prepared from tris-(2-hydroxyethoxy)methylsilane (MeGMS), tris-(2-hydroxyethoxy)phenylsilane (PhGMS), 1,2-bis[tris-(2-hydroxyethoxy)silyl]ethane (bEtGMS) and 1,4-bis[tris-(2-hydroxyethoxy)silyl]benzene (bPhGMS) with or without the presence of tetrakis(2-hydroxyeth-oxy)silane (EGMS) and a structure-directing agent (P123).

These glycol-modified organosilanes do not only offer the possibility to access monolithic gels with a high degree of substitution with organic groups (up to 100% of the Si-atoms) under very mild pH conditions, but also to form hierarchically organized gels exhibiting meso- as well as macropores. The amount of organosilane has been varied from 0 to 100% with respect to EGMS. The wet gels have been dried by supercritical extraction with carbon dioxide.

In the present work, the sol-gel behaviour of these glycol-modified organosilanes is discussed with special emphasis on gels prepared in the presence of a block copolymeric surfactant acting as phase separation agent. The consequences on the formation of the meso- and macrostructure due to the presence of the glycol and the organic groups are presented. The structural features of the gels are investigated by various analytical techniques such as small angle X-ray scattering, nitrogen sorption, and scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mann S (2001) Biomineralization—Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  2. Handbook of Porous Solids (2002) Schüth F, Sing KSW, Weitkamp J (eds). Wiley-VCH, Weinheim

  3. Brinker CJ, Scherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  4. Gill I, Ballesteros A (1998) J Am Chem Soc 120:8587

    Article  CAS  Google Scholar 

  5. Sattler K, Gradzielski M, Mortensen K, Hoffmann H (1998) Ber Bunsenges Phys Chem 102:1544

    CAS  Google Scholar 

  6. Sattler K, Hoffmann H (1999) Progr Colloid Polym Sci 112:40

    Article  CAS  Google Scholar 

  7. Goneberg A, Verheyden A (1952) Belgian Patent 510419 (to Union chimique belge Soc.)

  8. Abbott AD, Wright JR, Goldschmidt A, Stewart WT, Bolt RO (1961) J Chem Eng Data 6:437

    Article  CAS  Google Scholar 

  9. Krimm H, Schnell H (1962) German Patent 1136114 (to Farbenfabriken Bayer)

  10. Goldberg EP, Powers EJ (1962) J Polym Sci Polym Phys Ed 2:835

    Google Scholar 

  11. Vaughn A, British patent 989379 (to General Electric Co.) (1965)

  12. Mehrotra RC, Narain RP (1967) Ind J Chem 5:444

    CAS  Google Scholar 

  13. Brook MA, Brennan JD, Chen Y (2003) PCT Intl Patent Appl 2003102001 A1 20031211

  14. Brook MA, Chen Y, Guo K, Zhang Z, Brennan JD (2004) J Mater Chem 14:1469

    Article  CAS  Google Scholar 

  15. Hüsing N, Raab C, Torma V (2003) Mater Res Soc Symp Proc 775:9

    Google Scholar 

  16. Brandhuber D, Hüsing N, Peterlik H (2005) J Mater Chem 15:3896

    Article  CAS  Google Scholar 

  17. Brandhuber D, Hüsing N, Torma V, Raab C, Peterlik H (2005) Chem Mater 17:4262

    Article  CAS  Google Scholar 

  18. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321

    Article  CAS  Google Scholar 

  19. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159

    Article  CAS  Google Scholar 

  20. Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Science 276:923

    Article  CAS  Google Scholar 

  21. Shea KJ, Loy DA, Webster O (1992) J Am Chem Soc 114:6700

    Article  CAS  Google Scholar 

  22. Gun J, Lev O, Regev O, Pevzner S, Kucernak A (1998) J Sol-Gel Sci Technol 13:189

    Article  CAS  Google Scholar 

  23. Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H (2004) J Sep Sci 27:874

    Article  CAS  Google Scholar 

  24. Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2003) Langmuir 19:5626

    Article  CAS  Google Scholar 

  25. Rao AV, Kulkarni MM, Amalnerkar DP, Steth T (2003) J Non-Cryst Solids 330:187

    Article  CAS  Google Scholar 

  26. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Chem Mater 12:3624

    Article  CAS  Google Scholar 

  27. Brandhuber D, Hüsing N, Peterlik H (2005) Mater Res Soc Symp Proc 847:127

    Google Scholar 

  28. Dong H, Brook MA, Brennan JD (2005) Chem Mater 17:2807

    Article  CAS  Google Scholar 

  29. Nakanishi K (1997) J Porous Mater 4:67

    Article  CAS  Google Scholar 

  30. Chengzhong Y, Fan J, Tian B, Zhao D (2004) Chem Mater 16:889

    Article  CAS  Google Scholar 

  31. Brandhuber D, Hüsing N, Peterlik H (2006) Small 2:503

    Article  CAS  Google Scholar 

  32. Inagaki S, Guan S, Ohsuna T, Osamu O T (2002) Nature 416:304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hüsing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüsing, N., Brandhuber, D. & Kaiser, P. Glycol-modified organosilanes in the synthesis of inorganic-organic silsesquioxane and silica monoliths. J Sol-Gel Sci Technol 40, 131–139 (2006). https://doi.org/10.1007/s10971-006-8802-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-8802-z

Keywords

Navigation