Skip to main content
Log in

Effect of sulphur concentration on the structural and electronic properties of ZnS nanoparticles synthesized using chemical precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A systematic study is presented on the synthesis of ZnS nanoparticles by using simple chemical precipitation method without using any capping agent. The ZnS nanoparticles have been synthesized using precursor solution with different Zn2+:S2− ratio. The as synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and impedance spectroscopy. The XRD patterns reveal the formation of ZnS nanoparticles with wurtzite hexagonal phase which changes to sphalarite phase for higher concentration of S2− in the precursor solution. XRD, SEM and AFM studies have shown enhancement in particle size on increasing sulphur content. SEM and AFM images depict formation of deformed spherical nanoparticles with particle size ranging from 10 to 50 nm. Optical absorption spectra of synthesized material show a red shift in the optical absorption on increase of S2− ion concentration. Variation in electrical conductivity obtained from impedance measurements at different temperatures has been suitably correlated to Davis–Mott model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS nanostructures: synthesis, properties and applications. Crit. Rev. Solid State Mater. Sci. 38(1), 57–90 (2013)

    Article  Google Scholar 

  2. K.S. Rathore, D. Patidar, Y. Janu, N.S. Saxena, K. Sharma, T.P. Sharma, Structural and optical characterization of chemically synthesized ZnS nanoparticles. Chalcognide Lett. 5, 105–110 (2008)

    Google Scholar 

  3. W. Park, J.S. King, C.W. Neff, C. Liddell, C.J. Summers, ZnS based photonic crystals. Phys. Status Solidi 229, 949–960 (2002)

    Article  Google Scholar 

  4. B. Gillbert, B.H. Frazer, H. Zhang, F. Huang, J.F. Banfield, D. Haskel, J.C. Lang, X-ray absorption spectroscopy of the cubic and hexagonal poly type ZnS”. Phys. Rev. B 66, 245205 (2002)

    Article  Google Scholar 

  5. S.B. Qadri, E.F. Sketton, “The effect of particle size on the structural transition in Zinc Sulphide”. J. Appl. Phy 89, 115–119 (2001)

    Article  Google Scholar 

  6. S.D. Esgreniers, L. Beaulieu, I. Lepage, “Pressure-induced structural changes in ZnS”. Phys. Rev. B 61, 8726–8733 (2000)

    Article  Google Scholar 

  7. J.F. Suyver, S.F. Weister, J.J. Kelly, A. Meijerink, Synthesis and photoluminescence of nanocrystallite ZnS. Nano Lett. 1, 429 (2001)

    Article  Google Scholar 

  8. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56,175–287 (2011)

    Article  Google Scholar 

  9. Y. Ding, X.D. Wang, L.Z. Wang, Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem. Phys. Lett. 398, 32–36 (2004)

    Article  Google Scholar 

  10. A. Marusamy, S. Agilan, M. Kumarsamy, C.K. Senthil kumaran, M. Sarvanakumar, The influence of the Zn/S source concentration ratio on its structural, optical and magnetic properties of ZnS quantum dots. Chalcogenide Lett. 10, 179–187 (2003)

    Google Scholar 

  11. H.K. Sharma, P.K. Shukla, L.S. Agrawal. Structural and electrical studies on ZnS nanoparticles prepared without using capping agent. J. Optoelectron. Adv. Mater. 17, 608–613 (2015)

    Google Scholar 

  12. C.C. Yang, S. Li, Size, dimensionality and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. Phys. Chem. C 112, 2851 (2008)

    Article  Google Scholar 

  13. P.C. Patel, N. Srivastav, C.P. Srivastav, Synthesis of wurtzite ZnS nanocrystallites at low temperature. J. Mater. Sci. 13, 1367 (2013)

    Google Scholar 

  14. F.A. La Porta, J. Andre´s, M.S. Li, J.R. Sambrano, J.A. Varelaa, E. Longoa, Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide. Phys. Chem. Chem. Phys. 16, 20127 (2014)

    Article  Google Scholar 

  15. B.D. Culty, Elements of X-ray Diffraction, 2nd edn. (Addision Wesley company, USA, 1956), p. 102

    Google Scholar 

  16. G. Nabiyouni, R. Sahraei, M. Toghiany, M. Majles, K. Hedayati, Preparation and characterization of nanostructured ZnS thin film grown on glass and N-type Si substrate using a new chemical bath deposition. Adv. Mater. Sci. 27, 52–57 (2011)

    Google Scholar 

  17. M.A. Martinz, C. Guillen, J. Herrero, Cadmium sulphide growth investigations on different SnO2 substrates. Appl. Surf. Sci. 140, 182–189 (1999)

    Article  Google Scholar 

  18. D.A. Skoog, F. Holler, C. James, R. Stanley, Principles of Instrumental Analysis, 6th edn. (Thomson Brooks, Cole, Belmont, CA, 2007), pp. 169–173

    Google Scholar 

  19. P. Nagels, Topics in Applied Physics, Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, New York, 1979)

    Google Scholar 

  20. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, (Clareendon, Oxford University Press, New York, 1979)

  21. M.A. Majeed Khan, S. Kumar, M. Alhoshan, A.S. Aidwayyan, Spray pyrolysed Cu2ZnSnS4 absorbing layer: a potential candidate for photovoltaic applications. Opt. Laser Technol. 49, 196–201 (2013)

    Article  Google Scholar 

  22. Y. Tian, H. Lu, J. Tian, C. Li, C. Hui, X. Shi, Y. Huang, C. Shen, H. Gao, Influence of Si Co-doping on electrical transport properties of magnesium doped boron nanoswords. Appl. Phys. Lett. 100, 103112 (2012)

    Article  Google Scholar 

  23. W.J. Lu, B.C. Zhao, R. Ang, W.H. Song, P.Y. Sun Studies of electrical and thermal transport properties of the electron-doped manganite Sr0.9Ce0.1MnO3. Phys. B 367, 243–248 (2005)

    Article  Google Scholar 

  24. O.S. Panwar, I. Rawal, R.K. Tripathi, A.K. Srivastava, M. Kumar, Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique. J. Alloys Compd. 628, 135–145 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.K., Shukla, P.K. & Agrawal, S.L. Effect of sulphur concentration on the structural and electronic properties of ZnS nanoparticles synthesized using chemical precipitation method. J Mater Sci: Mater Electron 28, 6226–6232 (2017). https://doi.org/10.1007/s10854-016-6302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6302-7

Keywords

Navigation