Skip to main content
Log in

Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports direct growth of [001] ZnO nanorod arrays on ITO substrate from aqueous solution with electric field assisted nucleation, followed with thermal annealing. X-ray diffraction analyses revealed that nanorods have wurtzite crystal structure. The diameter of ZnO nanorods was 60–300 nm and the length was up to 2.5 μm depending on the growth condition. Photoluminescence spectra showed a broad emission band spreading from 500 to 870 nm, which suggests that ZnO nanorods have a high density of oxygen interstitials. Low and nonlinear electrical conductivity of ZnO nanorod array was observed, which was ascribed to non-ohmic contact between top electrode and ZnO nanorods and the low concentration of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Adv. Mater. 14, 418 (2002).

    Article  CAS  Google Scholar 

  2. M. Huang, S. Mao, H. Feick, H. Yan, T. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  3. J.Y. Lee, Y.S. Choi, J.H. Kim, M.O. Park, and S. Im, Thin Solid Films 403, 553 (2002).

    Article  Google Scholar 

  4. S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, and H. Shen, J. Cryst. Grow. 225, 110 (2001).

    Article  CAS  Google Scholar 

  5. M.H. Koch, P.Y. Timbrell, and R.N. Lamb, Semicond. Sci. Tech. 10, 1523 (1995).

    Article  CAS  Google Scholar 

  6. K. Keis, E. Magnusson, H. Lindstorm, S.E. Lindquist, and A. Hagfelt, Sol. Energ. Mater. Sol. Cells 73, 51 (2002).

    Article  Google Scholar 

  7. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Superlatt. Microstr. 34, 3 (2003).

    Article  CAS  Google Scholar 

  8. Y. Lin, Z. Hang, Z. Tang, F. Yuan, and J. Li, Adv. Mater. Opt. Electron. 9, 205 (1999).

    Article  CAS  Google Scholar 

  9. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 4 (2001).

    Article  Google Scholar 

  10. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001).

    Article  CAS  Google Scholar 

  11. P.M. Martin, M.S. Good, J.W. Johnston, G.J. Posakony, L.J. Bond, and S.L. Crawford, Thin Solid Films 379, 253 (2000).

    Article  CAS  Google Scholar 

  12. W.I. Park, D.H. Kim, S.W. Jung, and G.C. Yi, Appl. Phys. Lett. 80, 4232 (2002).

    Article  CAS  Google Scholar 

  13. V.A.L. Roy, A.B. Djurisic, W.K. Chan, J. Gao, H.F. Lui, and C. Surya, Appl. Phys. Lett. 83, 141 (2003).

    Article  CAS  Google Scholar 

  14. B.D. Yao, Y.F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002).

    Article  CAS  Google Scholar 

  15. L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hegfeld, J. Phys. Chem. B 105, 3350 (2001).

    Article  CAS  Google Scholar 

  16. X. Kong and Y. Li, Chem. Lett. 32, 838 (2003).

    Article  CAS  Google Scholar 

  17. Y. Li, G.W. Meng, and L.D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).

    Article  CAS  Google Scholar 

  18. M. Izaki and T. Omi, Appl. Phys. Lett. 68, 2439 (1996).

    Article  CAS  Google Scholar 

  19. Th. Pauporte and D. Lincot, Appl. Phys. Lett. 75, 3817 (1999).

    Article  CAS  Google Scholar 

  20. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, Nanotechnology 16, 2567 (2005).

    Article  CAS  Google Scholar 

  21. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu, Appl. Phys. Lett. 83, 144 (2003).

    Article  CAS  Google Scholar 

  22. M. Yan, H.T. Zhang, E.J. Widjaja, and R.P.H. Chang, J. Appl. Phys. 94, 5240 (2003).

    Article  CAS  Google Scholar 

  23. L. Vayssieres, Adv. Mater. 15, 464 (2003).

    Article  CAS  Google Scholar 

  24. G.Z. Cao, J.J. Schermer, W.J.P. van Enckevort, W.A.L.M. Elst, and L.J. Giling, J. Appl. Phys. 79, 1357 (1996).

    Article  CAS  Google Scholar 

  25. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).

    Article  CAS  Google Scholar 

  26. L. Vayssieres, Int. J. Nanotechnology 1, 1 (2004).

    CAS  Google Scholar 

  27. Y. Kajikawa, S. Noda, and H. Komiyama, Chem. Vapor Deposit. 8, 99 (2002).

    Article  CAS  Google Scholar 

  28. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, and J.A. Switzer, Chem. Mater. 13, 508 (2001).

    Article  CAS  Google Scholar 

  29. T. Pauporte, R. Cortes, M. Froment, B. Beaumont, and D. Lincot, Chem. Mater. 14, 4702 (2002).

    Article  CAS  Google Scholar 

  30. Y. Han, D. Kim, J. Cho, and S. Koh, J. Vac. Sci. Tech. B, 21, 288(2003).

    Article  CAS  Google Scholar 

  31. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  Google Scholar 

  32. X.L. Wu, G.G. Siu, C.L. Fu, and H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001).

    Article  CAS  Google Scholar 

  33. G. D. Mahan, J. Appl. Phys, 54, 3825 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Shang, H. & Cao, G. Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation. J Sol-Gel Sci Technol 38, 79–84 (2006). https://doi.org/10.1007/s10971-006-5731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-5731-9

Keywords

Navigation