Skip to main content
Log in

An olfactory receptor pseudogene whose function emerged in humans: a case study in the evolution of structure–function in GPCRs

  • Published:
Journal of Structural and Functional Genomics

Abstract

Human olfactory receptor, hOR17-210, is identified as a pseudogene in the human genome. Experimental data has shown however, that the gene product of frame-shifted, cloned hOR17-210 cDNA was able to bind an odorant-binding protein and is narrowly tuned for excitation by cyclic ketones. Supported by experimental results, we used the bioinformatics methods of sequence analysis (genome-wide and pair-wise), computational protein modeling and docking, to show that functionality in this receptor is retained due to sequence-structure features not previously observed in mammalian ORs. This receptor does not possess the first two transmembrane helical domains (of seven typically seen in GPCRs). It however, possesses an additional TM that has not been observed in other human olfactory receptors. By incorporating these novel structural features, we created two putative models for this receptor. We also docked odor ligands that were experimentally shown to bind hOR17-210. We show how and why structural modifications of OR17-210 do not hinder this receptor’s functionality. Our studies reveal that novel gene rearrangements that result in sequence and structural diversity may have a bearing on OR and GPCR function and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OR:

Olfactory Receptors

GPCR:

GTP-binding Protein Coupled Receptors

HUGO:

Human Genome Organization

HORDE:

Human Olfactory Receptor Database Exploratorium

SPHGEN:

Sphere Generator

CVFF:

Consistent Valence Force Field

DMS:

Dot Molecular Surface

References

  1. Ji TH, Grossmann M, Ji I (1998) G protein-coupled receptors. I. Diversity of receptor–ligand interactions. J Biol Chem 273:17299–17302

    Article  PubMed  CAS  Google Scholar 

  2. Muller G (2000) Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem 7:861–888

    PubMed  CAS  Google Scholar 

  3. King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  PubMed  CAS  Google Scholar 

  4. Mombaerts P (1999) Molecular biology of odorant receptors in vertebrates. Annu Rev Neurosci 22:487–509

    Article  PubMed  CAS  Google Scholar 

  5. Abaffy T, Malhotra A, Luetje CW (2007) The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 282:1216–1224

    Article  PubMed  CAS  Google Scholar 

  6. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043

    PubMed  CAS  Google Scholar 

  7. Bruch RC, Rulli RD (1988) Ligand binding specificity of a neutral l-amino acid olfactory receptor. Comp Biochem Physiol B 91:535–540

    Article  PubMed  CAS  Google Scholar 

  8. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815

    Article  PubMed  CAS  Google Scholar 

  9. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  10. Mombaerts P (2004) Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 14:31–36

    Article  PubMed  CAS  Google Scholar 

  11. Mombaerts P (1996) Targeting olfaction. Curr Opin Neurobiol 6:481–486

    Article  PubMed  CAS  Google Scholar 

  12. Oka Y, Omura M, Kataoka H, Touhara K (2004) Olfactory receptor antagonism between odorants. EMBO J 23:120–126

    Article  PubMed  CAS  Google Scholar 

  13. Rothman A, Feinstein P, Hirota J, Mombaerts P (2005) The promoter of the mouse odorant receptor gene M71. Mol Cell Neurosci 28:535–546

    Article  PubMed  CAS  Google Scholar 

  14. Touhara K (2002) Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech 58:135–141

    Article  PubMed  CAS  Google Scholar 

  15. Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, Sakano H, Haga T (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci USA 96:4040–4045

    Article  PubMed  CAS  Google Scholar 

  16. Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19:517–544

    Article  PubMed  CAS  Google Scholar 

  17. Shepherd GM (1995) Toward a molecular basis for sensory perception. In: Gazzaniga MS, Bizzi E (eds) The cognitive neurosciences. MIT Press, Cambridge, pp 105–137

    Google Scholar 

  18. Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11:685–702

    Article  PubMed  CAS  Google Scholar 

  19. Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci USA 101:2584–2589

    Article  PubMed  CAS  Google Scholar 

  20. Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci USA 100:12235–12240

    Article  PubMed  CAS  Google Scholar 

  21. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:RESEARCH0018

    Google Scholar 

  22. Quignon P, Giraud M, Rimbault M, Lavigne P, Tacher S, Morin E, Retout E, Valin AS, Lindblad-Toh K, Nicolas J, Galibert F (2005) The dog and rat olfactory receptor repertoires. Genome Biol 6:R83

    Article  PubMed  Google Scholar 

  23. Young JM, Shykind BM, Lane RP, Tonnes-Priddy L, Ross JA, Walker M, Williams EM, Trask BJ (2003) Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4:R71

    Article  PubMed  Google Scholar 

  24. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    PubMed  CAS  Google Scholar 

  25. Niimura Y, Nei M (2005) Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene 346:13–21

    Article  PubMed  CAS  Google Scholar 

  26. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE 2:e708

    Article  PubMed  Google Scholar 

  27. Sharon D, Glusman G, Pilpel Y, Khen M, Gruetzner F, Haaf T, Lancet D (1999) Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 61:24–36

    Article  PubMed  CAS  Google Scholar 

  28. Menashe I, Man O, Lancet D, Gilad Y (2002) Population differences in haplotype structure within a human olfactory receptor gene cluster. Hum Mol Genet 11:1381–1390

    Article  PubMed  CAS  Google Scholar 

  29. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etievant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Senses 30:195–207

    Article  PubMed  CAS  Google Scholar 

  30. Imai T, Suzuki M, Sakano H (2006) Odorant receptor-derived cAMP signals direct axonal targeting. Science 314:657–661

    Article  PubMed  CAS  Google Scholar 

  31. Fuchs T, Glusman G, Horn-Saban S, Lancet D, Pilpel Y (2001) The human olfactory subgenome: from sequence to structure and evolution. Hum Genet 108:1–13

    Article  PubMed  CAS  Google Scholar 

  32. Visiers I, Ballesteros JA, Weinstein H (2002) Three-dimensional representations of G protein-coupled receptor structures and mechanisms. Methods Enzymol 343:329–371

    Article  PubMed  Google Scholar 

  33. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  CAS  Google Scholar 

  34. Moller S, Vilo J, Croning MD (2001) Prediction of the coupling specificity of G protein coupled receptors to their G proteins. Bioinformatics 17(Suppl 1):S174–S181

    Google Scholar 

  35. Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255

    Article  PubMed  CAS  Google Scholar 

  36. Lai PC, Singer MS, Crasto CJ (2005) Structural activation pathways from dynamic olfactory receptor–odorant interactions. Chem Senses 30:781–792

    Article  PubMed  CAS  Google Scholar 

  37. Singer MS (2000) Analysis of the molecular basis for octanal interactions in the expressed rat 17 olfactory receptor. Chem Senses 25:155–165

    Article  PubMed  CAS  Google Scholar 

  38. John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31:3982–3992

    Article  PubMed  CAS  Google Scholar 

  39. Pirovano W, Feenstra KA, Heringa J (2008) PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24:492–497

    Article  PubMed  CAS  Google Scholar 

  40. Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA III (2006) Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 12:931–941

    Article  PubMed  CAS  Google Scholar 

  41. Floriano WB, Vaidehi N, Goddard WA III (2004) Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem Senses 29:269–290

    Article  PubMed  CAS  Google Scholar 

  42. Floriano WB, Vaidehi N, Goddard WA, Singer MS III, Shepherd GM (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci USA 97:10712–10716

    Article  PubMed  CAS  Google Scholar 

  43. Floriano WB, Vaidehi N, Zamanakos G, Goddard WA III (2004) HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases. J Med Chem 47:56–71

    Article  PubMed  CAS  Google Scholar 

  44. Freddolino PL, Kalani MY, Vaidehi N, Floriano WB, Hall SE, Trabanino RJ, Kam VW, Goddard WA III (2004) Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci USA 101:2736–2741

    Article  PubMed  CAS  Google Scholar 

  45. Hall SE, Floriano WB, Vaidehi N, Goddard WA III (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 29:595–616

    Article  PubMed  CAS  Google Scholar 

  46. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Sci 13:240–254

    Article  PubMed  CAS  Google Scholar 

  47. Singer MS, Shepherd GM (1994) Molecular modeling of ligand–receptor interactions in the OR5 olfactory receptor. Neuroreport 5:1297–1300

    PubMed  CAS  Google Scholar 

  48. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA III (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12622–12627

    Article  PubMed  CAS  Google Scholar 

  49. Melen K, Krogh A, von Heijne G (2003) Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 327:735–744

    Article  PubMed  CAS  Google Scholar 

  50. Okada T (2004) X-ray crystallographic studies for ligand–protein interaction changes in rhodopsin. Biochem Soc Trans 32:738–741

    Article  PubMed  CAS  Google Scholar 

  51. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol Recognit 9:175–186

    Article  PubMed  CAS  Google Scholar 

  52. Gschwend DA, Kuntz ID (1996) Orientational sampling and rigid-body minimization in molecular docking revisited: on-the-fly optimization and degeneracy removal. J Comput Aided Mol Des 10:123–132

    Article  PubMed  CAS  Google Scholar 

  53. Richards FM (1977) Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng 6:151–176

    Article  PubMed  CAS  Google Scholar 

  54. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  55. Burger M, Burger JA, Hoch RC, Oades Z, Takamori H, Schraufstatter IU (1999) Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi’s sarcoma herpesvirus-G protein-coupled receptor. J Immunol 163:2017–2022

    PubMed  CAS  Google Scholar 

  56. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15:3566–3578

    PubMed  CAS  Google Scholar 

  57. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20

    Article  PubMed  Google Scholar 

  58. Otaki JM, Firestein S (2001) Length analyses of mammalian G-protein-coupled receptors. J Theor Biol 211:77–100

    Article  PubMed  CAS  Google Scholar 

  59. Olender T, Feldmesser E, Atarot T, Eisenstein M, Lancet D (2004) The olfactory receptor universe—from whole genome analysis to structure and evolution. Genet Mol Res 3:545–553

    PubMed  CAS  Google Scholar 

  60. Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 101:959–963

    Article  PubMed  CAS  Google Scholar 

  61. Katada S, Touhara K (2004) A molecular basis for odorant recognition: olfactory receptor pharmacology. Nippon Yakurigaku Zasshi 124:201–209

    PubMed  CAS  Google Scholar 

  62. Krebs A, Villa C, Edwards PC, Schertler GF (1998) Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J Mol Biol 282:991–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously supported by Grant 2 P01 DC 004732-05 from the National Institute for Deafness and Communicative Disorders, National Institutes of Health. P. L. was supported as a part-time undergraduate researcher at the Department of Neurobiology, Yale University School of Medicine. This work is also supported by a Faculty Development Grant (CC) at the University of Alabama at Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiquito J. Crasto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, P.C., Bahl, G., Gremigni, M. et al. An olfactory receptor pseudogene whose function emerged in humans: a case study in the evolution of structure–function in GPCRs. J Struct Funct Genomics 9, 29–40 (2008). https://doi.org/10.1007/s10969-008-9043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-008-9043-x

Keywords

Navigation