Skip to main content
Log in

Modeling the human PTC bitter-taste receptor interactions with bitter tastants

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We employed the first principles computational method MembStruk and homology modeling techniques to predict the 3D structures of the human phenylthiocarbamide (PTC) taste receptor. This protein is a seven-transmembrane-domain G protein-coupled receptor that exists in two main forms worldwide, designated taster and nontaster, which differ from each other at three amino-acid positions. 3D models were generated with and without structural similarity comparison to bovine rhodopsin. We used computational tools (HierDock and ScanBindSite) to generate models of the receptor bound to PTC ligand to estimate binding sites and binding energies. In these models, PTC binds at a site distant from the variant amino acids, and PTC binding energy was equivalent for both the taster and nontaster forms of the protein. These models suggest that the inability of humans to taste PTC is due to a failure of G protein activation rather than decreased binding affinity of the receptor for PTC. Amino-acid substitutions in the sixth and seventh transmembrane domains of the nontaster form of the protein may produce increased steric hindrance between these two α-helices and reduce the motion of the sixth helix required for G protein activation.

3D-model of phenylthiocarbamide (PTC) bound to PTC taste reception

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) Cell 100:93–702

    Article  Google Scholar 

  2. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) Cell 100:703–711

    Article  PubMed  CAS  Google Scholar 

  3. Lindemann B (2001) Nature 413:219–225

    Article  PubMed  CAS  Google Scholar 

  4. Fox AL (1932) Proc Natl Acad Sci USA 18:115–120

    Article  PubMed  CAS  Google Scholar 

  5. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Science 299:1221–1225

    Article  PubMed  CAS  Google Scholar 

  6. Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (2004) Am J Hum Genet 74:637–746

    Article  PubMed  CAS  Google Scholar 

  7. Fischer R, Griffin F, England S, Garn SM (1961) Nature 191:1328

    Article  PubMed  CAS  Google Scholar 

  8. Drewnowski A, Henderson SA, Barratt-Fornell A (2001) Drug Metab Dispos 29:535–538

    PubMed  CAS  Google Scholar 

  9. Harris H, Kalmus H (1949) Ann Eugen 15:32–45

    PubMed  CAS  Google Scholar 

  10. Barnicot N, Harris H, Kalmus H (1951) Ann Eugen 16:119–128

    PubMed  CAS  Google Scholar 

  11. Delwiche JF, Buletic Z, Breslin PA (2001) Percept Psychophys 63:761–776

    PubMed  CAS  Google Scholar 

  12. Kameswaran L, Gopalakrishnan S, Sukumar M (1974) Ind J Pharmac 6:134–140

    Google Scholar 

  13. Peterson DI, Lonergan LH, Hardinge MG (1968) Arch Environ Health 16:219–222

    PubMed  CAS  Google Scholar 

  14. Cannon D, Baker T, Piper M, Scholand MB, Lawrence D, Drayna D, McMahon W, Villegas GM, Caton T, Coon H, Leppert M (2005) Nicotine Tob Res 7:853–858

    Article  PubMed  CAS  Google Scholar 

  15. Sultana T, Savage GP, Porter NG (2002) Proc Nutr Soc N Z 27:86–91

    CAS  Google Scholar 

  16. Floriano WB, Vaidehi N, Singer MS, Goddard WA III, Shepherd GM (2000) Proc Natl Acad Sci USA 97:10712–10716

    Article  PubMed  CAS  Google Scholar 

  17. Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard WA III (2002) Proc Natl Acad Sci USA 99:12622–12627

    Article  PubMed  CAS  Google Scholar 

  18. Trabanino RJ, Hall S, Vaidehi N, Floriano WB, Goddard WA III (2004) Biophys J 84:1904–1921

    Article  Google Scholar 

  19. Floriano WB, Nagarajan V, Zamanakos G, Goddard WA III (2004) J Med Chem 47:56–71

    Article  PubMed  CAS  Google Scholar 

  20. MDL Information Systems Inc, http://www.mdli.com

  21. Tripos Inc, http://www.tripos.com

  22. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  23. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  24. Accelrys Inc, http://www.accelrys.com

  25. Vriend G (1990) J Mol Graph 8:52–56

    Article  PubMed  CAS  Google Scholar 

  26. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  27. Brady GP Jr, Stouten PFW (2000) J Comput Aided Mol Des 14:383–401

    Article  PubMed  CAS  Google Scholar 

  28. Freddolino PL, Yashar M, Kalani S, Vaidehi N, Floriano WB, Hall SE, Trabanino RJ, Kam VW, Goddard WA III (2004) Proc Natl Acad Sci USA 101:2736–2741

    Article  PubMed  CAS  Google Scholar 

  29. Floriano WB, Vaidehi N, Goddard WA III (2004) Chem Senses 29:269–290

    Article  PubMed  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  31. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RF, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  32. Hall MJ, Bartoshuk LM, Cain WS, Stevens JC (1975) Nature 253:442–443

    Article  PubMed  CAS  Google Scholar 

  33. Drewnowski A, Henderson SA, Shore AB (1997) Am J Clin Nutr 66:391–397

    PubMed  CAS  Google Scholar 

  34. Bartoshuk LM (2000) Chem Senses 25:447–460

    Article  PubMed  CAS  Google Scholar 

  35. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Science 274:768–770

    Article  PubMed  CAS  Google Scholar 

  36. Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR (1996) Nature 383:347–350

    Article  PubMed  CAS  Google Scholar 

  37. Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) EMBO J 16:6737–6747

    Article  PubMed  CAS  Google Scholar 

  38. Dunham TD, Farrens DL (1999) J Biol Chem 274:1683–1690

    Article  PubMed  CAS  Google Scholar 

  39. Medkova M, Preininger AM, Yu NJ, Hubbell WL, Hamm HE (2002) Biochemistry 41:9962–9972

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt C, Li B, Bloodworth L, Erlenbach I, Zeng FY, Wess J (2003) J Biol Chem 278:30248–30260

    Article  PubMed  CAS  Google Scholar 

  41. Pauwels PJ, Wurch T (1998) Mol Neurobiol 17:109–135

    Article  PubMed  CAS  Google Scholar 

  42. Gether U (2000) Endocr Rev 21:90–113

    Article  PubMed  CAS  Google Scholar 

  43. Okada T, Ernst OP, Palczewski K, Hofmann KP (2001) Trends Biochem Sci 26:318–324

    Article  PubMed  CAS  Google Scholar 

  44. Rao VR, Oprian DD (1996) Annu Rev Biophys Biomol Struct 25:287–314

    PubMed  CAS  Google Scholar 

  45. Decaillot FM, Befort K, Filliol D, Yue S, Walker P, Kieffer BL (2003) Nat Struct Biol 10:629–636

    Article  PubMed  CAS  Google Scholar 

  46. Keast RS, Breslin PA (2002) Chem Senses 27:123–131

    Article  PubMed  Google Scholar 

  47. Schifferstein HNJ, Frijters JER (1991) Chem Senses 16:303–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Susan Sullivan and Dr. John Northup for helpful comments on the manuscript. This work was supported by NIDCD Z01-000046-04, and by NIH-BRGRO1-GM625523, NIH-R29AI40567, and NIH-HD36385. The computational facilities at the Materials and Process Simulation Center (MSC) were provided by a Shared University Research grant from International Business Machines and Defense University Research Instrumentation Program grants from the Army Research Office (ARO) and the Office of Naval Research (ONR). The facilities of the MSC are also supported by the Department of Energy-Advanced Simulation and Computing Program, National Science Foundation, Multidisciplinary Research Initiative - Army Research Office, Multidisciplinary Research Initiative - Office of Naval Research, General Motors, ChevronTexaco, Seiko-Epson, Beckman Institute, and Asahi Kasei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Drayna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floriano, W.B., Hall, S., Vaidehi, N. et al. Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 12, 931–941 (2006). https://doi.org/10.1007/s00894-006-0102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0102-6

Keywords

Navigation