Skip to main content
Log in

The transcriptional response of Escherichia coli to recombinant protein insolubility

  • Published:
Journal of Structural and Functional Genomics

Abstract

Bacterial production of recombinant proteins offers several advantages over alternative expression methods and remains the system of choice for many structural genomics projects. However, a large percentage of targets accumulate as insoluble inclusion bodies rather than soluble protein, creating a significant bottleneck in the protein production pipeline. Numerous strategies have been reported that can improve in vivo protein solubility, but most do not scale easily for high-throughput expression screening. To understand better the host cell response to the accumulation of insoluble protein, we determined genome-wide changes in bacterial gene expression upon induction of either soluble or insoluble target proteins. By comparing transcriptional profiles for multiple examples from the soluble or insoluble class, we identified a pattern of gene expression that correlates strongly with protein solubility. Direct targets of the σ32 heat shock sigma factor, which includes genes involved in protein folding and degradation, were highly expressed in response to induction of insoluble protein. This same group of genes was also upregulated by insoluble protein accumulation under a different growth regime, indicating that σ32-mediated gene expression is a general response to protein insolubility. This knowledge provides a starting point for the rational design of growth parameters and host strains with improved protein solubility characteristics. Summary Problems with protein solubility are frequently encountered when recombinant proteins are expressed in E. coli. The bacterial host responds to this problem by increasing expression of the protein folding machinery via the heat shock sigma factor σ32. Manipulation of the σ32 regulon might provide a general mechanism for improving recombinant protein solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jana S, Deb JK (2005) Appl Microbiol Biotechnol 67:289–298

    Article  PubMed  CAS  Google Scholar 

  2. Sorensen HP, Mortensen KK (2005) Microb Cell Fact 4:1–8

    Article  PubMed  Google Scholar 

  3. Baneyx F, Mujacic M (2004) Nature Biotechnol 22:1399–1408

    Article  CAS  Google Scholar 

  4. Hoffmann F, Rinas U (2004) Adv Biochem Eng Biotechnol 89:143–161

    PubMed  CAS  Google Scholar 

  5. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Nature 400:693–696

    Article  PubMed  CAS  Google Scholar 

  6. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Cell 97:755–765

    Article  PubMed  CAS  Google Scholar 

  7. Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) Cell 90:491–500

    Article  PubMed  CAS  Google Scholar 

  8. Allen SP, Polazzi JO, Gierse JK, Easton AM (1992) J Bacteriol 174:6938–6947

    PubMed  CAS  Google Scholar 

  9. Laskowska E, Wawrzynow A, Taylor A (1996) Biochimie 78:117–122

    Article  PubMed  CAS  Google Scholar 

  10. Zolkiewski M (1999) J Biol Chem 274:28083–28086

    Article  PubMed  CAS  Google Scholar 

  11. Grossman AD, Straus DB, Walter WA, Gross CA (1987) Genes Dev 1:179–184

    Article  PubMed  CAS  Google Scholar 

  12. Zhao K, Liu M, Burgess RR (2005) J Biol Chem 280:17758–17768

    Article  PubMed  CAS  Google Scholar 

  13. Thomas JG, Baneyx F (1996) J Biol Chem 271:11141–11147

    Article  PubMed  CAS  Google Scholar 

  14. Nishhara K, Kanemori M, Yanagi H, Yura T (2000) Appl Environ Microbiol 66:884–889

    Article  Google Scholar 

  15. Chen J, Acton TB, Basu SK, Montelione GT, Inouye M (2002) J Mol Microbiol Biotechnol 4:519–524

    PubMed  CAS  Google Scholar 

  16. Han MJ, Park SJ, Park TJ, Lee SY (2004) Biotechnol Bioeng 88:426–436

    Article  PubMed  CAS  Google Scholar 

  17. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) E. coli. BMC Biotechnol 12:32

    Article  Google Scholar 

  18. Rinas U, Hoffmann F, Betiku E, Estape D, Marten S (2007) J Biotechnol 127:244–257

    Article  PubMed  CAS  Google Scholar 

  19. Studier FW, Moffatt BA (1986) J Mol Biol 189:113–130

    Article  PubMed  CAS  Google Scholar 

  20. Smith HE, Ward S (1998) J Mol Biol 279:605–619

    Article  PubMed  CAS  Google Scholar 

  21. Studier FW (1991) J Mol Biol 219:37–44

    Article  PubMed  CAS  Google Scholar 

  22. Blackwell JR, Horgan R (1991) FEBS Letters 295:10–12

    Article  PubMed  CAS  Google Scholar 

  23. Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE (2002) PRotein Eng 15:153–160

    Article  PubMed  CAS  Google Scholar 

  24. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado0Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) Science 277:1453–1474

    Google Scholar 

  25. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Genes Dev 20:1776–1789

    Article  PubMed  CAS  Google Scholar 

  26. Bullock TL, Roberts TM, Stewart M (1996) J Mol Biol 263:284–296

    Article  PubMed  CAS  Google Scholar 

  27. Hengge-Aronis R (1996) Mol Microbiol 21:887–893

    Article  PubMed  CAS  Google Scholar 

  28. Gamer J, Bujard H, Bukau B (1992) Cell 69:833–842

    Article  PubMed  CAS  Google Scholar 

  29. Tomoyasu T, Ogura T, Tatsuta T, Bukau (1998) Mol Microbiol 30:567–581

    Article  PubMed  CAS  Google Scholar 

  30. Guisbert E, Herman C, Lu CZ, Gross CA (2004) coli Genes Dev 18:2812–2821

    Article  CAS  Google Scholar 

  31. Straus D, Walter W, Gross CA (1990) Genes Dev 4:2202–2209

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Osnat Herzberg for providing expression plasmids for induction of soluble and insoluble proteins, Marc Salit for assistance in isolating some of the RNA samples, and Alvaro Godinez of the UMBI Microarray Core Facility for performing the microarray screens. We thank various members of the research groups of John Moult, Osnat Herzberg, and Fred Schwarz for fruitful discussions and critical comments on the manuscript. The work was supported by the Department of Energy’s Genomes to Life program, grant number DE-FG02-04ER63787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold E. Smith.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H.E. The transcriptional response of Escherichia coli to recombinant protein insolubility. J Struct Funct Genomics 8, 27–35 (2007). https://doi.org/10.1007/s10969-007-9030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-007-9030-7

Navigation