Skip to main content
Log in

The LARAMED project at INFN-LNL: review of the research activities on medical radionuclides production with the SPES cyclotron

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work reports the status of the LAboratory of RAdionuclides for MEDicine facility, as part of the Selective Production of Exotic Species research infrastructure under completion, along with the main project outcomes gained during the last years, thanks to an ongoing fruitful network of collaborations. The interdisciplinary aspects of the production of medically-relevant radionuclides, such as 67Cu, 47Sc, 52Mn etc., are shown, including the latest technological achievements in targetry, radiochemistry, and applied nuclear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Esposito J, Bettoni D, Boschi A et al (2018) LARAMED: a laboratory for radioisotopes of medical interest. Molecules 24:20. https://doi.org/10.3390/molecules24010020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pupillo G, Antonini P, Calderolla M, et al (2020) The Laramed project at LNL: 67Cu and 47Sc production for theranostic applications. In: aip conference proceedings 2295:020001. https://doi.org/10.1063/5.0032898

  3. Marchi T, Prete G, Gramegna F, et al (2020) The SPES facility at Legnaro National Laboratories. J Phys: Conf Ser 1643:012036. https://doi.org/10.1088/1742-6596/1643/1/012036

  4. Pupillo G (2022) IAEA-CN-301/073—Research activities on the cyclotron-based production of innovative radionuclides: the experience at the Legnaro National Laboratories of INFN

  5. PRISMAP—building a European network for medical radionuclides (2021). https://www.prismap.eu/. Accessed 10 May 2023

  6. Andrighetto A, Tosato M, Ballan M et al (2019) The ISOLPHARM project: ISOL-based production of radionuclides for medical applications. J Radioanal Nucl Chem 322:73–77. https://doi.org/10.1007/s10967-019-06698-0

    Article  CAS  Google Scholar 

  7. Borgna F, Ballan M, Favaretto C et al (2018) Early evaluation of copper radioisotope production at ISOLPHARM. Molecules 23:2437. https://doi.org/10.3390/molecules23102437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbaro F, Canton L, Carante MP, et al (2021) New results on proton-induced reactions on vanadium for 47Sc production and the impact of level densities on theoretical cross sections. Phys Rev C 104:044619. https://doi.org/10.1103/PhysRevC.104.044619

  9. Canton L, Fontana A (2020) Nuclear physics applied to the production of innovative radiopharmaceuticals. Eur Phys J Plus 135:770. https://doi.org/10.1140/epjp/s13360-020-00730-z

    Article  CAS  Google Scholar 

  10. Barbaro F, Canton L, Carante MP et al (2023) The innovative 52gMn for positron emission tomography (PET) imaging: production cross section modeling and dosimetric evaluation. Med Phys 50:1843–1854. https://doi.org/10.1002/mp.16130

    Article  CAS  PubMed  Google Scholar 

  11. De Nardo L, Pupillo G, Mou L et al (2022) A feasibility study of the therapeutic application of a mixture of 67/64Cu radioisotopes produced by cyclotrons with proton irradiation. Med Phys 49:2709–2724. https://doi.org/10.1002/mp.15524

    Article  CAS  PubMed  Google Scholar 

  12. De Nardo L, Pupillo G, Mou L, et al (2021) Preliminary dosimetric analysis of DOTA-folate radiopharmaceutical radiolabelled with 47Sc produced through natV(p,x)47Sc cyclotron irradiation. Phys Med Biol 66:025003. https://doi.org/10.1088/1361-6560/abc811

  13. Meléndez-Alafort L, Ferro-Flores G, Santos-Cuevas C et al (2021) Preclinical dosimetric studies of 177Lu-scFvD2B and comparison with 177Lu-PSMA-617 and 177Lu-iPSMA endoradiotherapeutic agents. Med Phys 48:4064–4074. https://doi.org/10.1002/mp.14936

    Article  CAS  PubMed  Google Scholar 

  14. De Nardo L, Ferro-Flores G, Bolzati C, et al (2019) Radiation effective dose assessment of [51Mn]- and [52Mn]-chloride. Appl Radiat Isotopes 153:108805. https://doi.org/10.1016/j.apradiso.2019.108805

  15. Stolarz A (2014) Target preparation for research with charged projectiles. J Radioanal Nucl Chem 299:913–931. https://doi.org/10.1007/s10967-013-2652-2

    Article  CAS  PubMed  Google Scholar 

  16. Skliarova H, Cisternino S, Cicoria G, et al (2020) Cyclotron solid targets preparation for medical radionuclides production in the framework of LARAMED project. J Phys: Conf Ser 1548:012022. https://doi.org/10.1088/1742-6596/1548/1/012022

  17. Cisternino S (2023) cyclotron solid target advanced manufacturing techniques for emerging medical radionuclide supply. Ph.D. thesis in Materials Engineering, University of Padova

  18. Baptista A, Silva F, Porteiro J et al (2018) Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 8:402. https://doi.org/10.3390/coatings8110402

    Article  CAS  Google Scholar 

  19. Palmieri V, Skliarova H, Cisternino S, et al (2019) Method for obtaining a solid target for radiopharmaceuticals Production; Istituto Nazionale di Fisica Nucleare. Patent no. WO/2019/053570; PCT/IB2018/056826

  20. Skliarova H, Cisternino S, Cicoria G et al (2019) Innovative target for production of technetium-99m by biomedical cyclotron. Molecules 24:25. https://doi.org/10.3390/molecules24010025

    Article  CAS  Google Scholar 

  21. Skliarova H, Cisternino S, Cicoria G et al (2019) Medical cyclotron solid target preparation by ultrathick film magnetron sputtering deposition. Instruments 3:21. https://doi.org/10.3390/instruments3010021

    Article  CAS  Google Scholar 

  22. Kotliarenko A, Azzolini O, Keppel G et al (2021) Investigation of a possible material-saving approach of sputtering techniques for radiopharmaceutical target production. Appl Sci 11:9219. https://doi.org/10.3390/app11199219

    Article  CAS  Google Scholar 

  23. Sugai I, Takeda Y, Makii H et al (2004) Target preparation of highly adhesive enriched 12C on Au substrates by a HIVIPP method. Nucl Instrum Methods Phys Res Sect A 521:227–234. https://doi.org/10.1016/j.nima.2003.11.391

    Article  CAS  Google Scholar 

  24. Sugai I, Takeda Y, Kawakami H (2006) Preparation of thick enriched isotopic Si targets by the HIVIPP method. Nucl Instrum Methods Phys Res Sect A 561:38–44. https://doi.org/10.1016/j.nima.2005.12.190

    Article  CAS  Google Scholar 

  25. Hu Z-Y, Zhang Z-H, Cheng X-W, et al (2020) A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater Des 191:108662. https://doi.org/10.1016/j.matdes.2020.108662

  26. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process. Mater Sci Eng A 394:139–148. https://doi.org/10.1016/j.msea.2004.11.019

    Article  CAS  Google Scholar 

  27. Skliarova H, Cisternino S, Pranovi L, et al (2020) HIVIPP deposition and characterization of isotopically enriched 48Ti targets for nuclear cross-section measurements. Nucl Instrum Methods Phys Res Sect A: Accelerators Spectrometers Detectors Assoc Equip 981:164371. https://doi.org/10.1016/j.nima.2020.164371

  28. Cisternino S, De Dominicis L, Mou L, et al (2023) Cryomilling of isotope-enriched Ti powders for HIVIPP deposition to manufacture targets for nuclear cross section measurement. Materials 16. https://doi.org/10.3390/ma16113926

  29. Cisternino S, Skliarova H, Antonini P et al (2022) Upgrade of the HIVIPP deposition apparatus for nuclear physics thin targets manufacturing. Instruments 6:23. https://doi.org/10.3390/instruments6030023

    Article  Google Scholar 

  30. Cisternino S, Cazzola E, Skliarova H et al (2022) Target manufacturing by Spark Plasma Sintering for efficient 89Zr production. Nucl Med Biol 104–105:38–46. https://doi.org/10.1016/j.nucmedbio.2021.11.004

    Article  CAS  PubMed  Google Scholar 

  31. Cisternino S, Sciacca G, El Idrissi M, et al (2022) Production of medical radionuclides: spark plasma sintering technique for cyclotron solid target manufacturing. La Metallurgia Italiana n.11/12 Novembre-Dicembre 2022:24–30. https://issuu.com/aimnet3/docs/aim_novembre-dicembre2022_paginesingole

  32. Qaim SM (2001) Nuclear data for medical applications: an overview. Radiochim Acta 89:189–196. https://doi.org/10.1524/ract.2001.89.4-5.189

    Article  CAS  Google Scholar 

  33. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509. https://doi.org/10.1007/s10967-018-6238-x

    Article  CAS  Google Scholar 

  34. Qaim SM, Hussain M, Spahn I, Neumaier B (2021) Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front Phys 9

  35. Pupillo G, Mou L, Manenti S et al (2022) Nuclear data for light charged particle induced production of emerging medical radionuclides. Radiochim Acta. https://doi.org/10.1515/ract-2022-0011

    Article  Google Scholar 

  36. De Dominicis L, Barbaro F, Canton L et al (2021) Production of 117mSn in natCd and natIn targets with an α-beam. Il Nuovo Cimento C. https://doi.org/10.1393/ncc/i2021-21129-y

    Article  Google Scholar 

  37. Pupillo G, Mou L, Martini P et al (2020) Production of 67Cu by enriched 70Zn targets: first measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV. Radiochim Acta 108:593–602. https://doi.org/10.1515/ract-2019-3199

    Article  CAS  Google Scholar 

  38. Pupillo G, Mou L, Boschi A et al (2019) Production of 47Sc with natural vanadium targets: results of the PASTA project. J Radioanal Nucl Chem 322:1711–1718. https://doi.org/10.1007/s10967-019-06844-8

    Article  CAS  Google Scholar 

  39. Pupillo G, Mou L, Haddad F et al (2020) New results on the natV(p, x)43Sc cross section: analysis of the discrepancy with previous data. Nucl Instrum Methods Phys Res Sect B 464:32–35. https://doi.org/10.1016/j.nimb.2019.11.032

    Article  CAS  Google Scholar 

  40. Pupillo G, Fontana A, Canton L et al (2019) Preliminary results of the PASTA project. Il Nuovo Cimento C 42:1–4. https://doi.org/10.1393/ncc/i2019-19139-1

    Article  Google Scholar 

  41. Pupillo G, Sounalet T, Michel N et al (2018) New production cross sections for the theranostic radionuclide 67Cu. Nucl Instrum Methods Phys Res Sect B 415:41–47. https://doi.org/10.1016/j.nimb.2017.10.022

    Article  CAS  Google Scholar 

  42. Pupillo G, Esposito J, Haddad F et al (2015) Accelerator-based production of 99Mo: a comparison between the 100Mo(p, x) and 96Zr(α, n) reactions. J Radioanal Nucl Chem 305:73–78. https://doi.org/10.1007/s10967-015-4091-8

    Article  CAS  Google Scholar 

  43. Pupillo G, Esposito J, Gambaccini M et al (2014) Experimental cross section evaluation for innovative 99Mo production via the (α, n) reaction on 96Zr target. J Radioanal Nucl Chem 302:911–917. https://doi.org/10.1007/s10967-014-3321-9

    Article  CAS  Google Scholar 

  44. Esposito J, Vecchi G, Pupillo G et al (2013) Evaluation of 99Mo and 99mTc productions based on a high-performance cyclotron. Scienze Technol Nucl Install. https://doi.org/10.1155/2013/972381

    Article  Google Scholar 

  45. Haddad F, Ferrer L, Guertin A et al (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur J Nucl Med Mol Imaging 35:1377–1387. https://doi.org/10.1007/s00259-008-0802-5

    Article  PubMed  Google Scholar 

  46. Braccini S (2013) The new bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector. AIP Conf Proc 1525:144–150. https://doi.org/10.1063/1.4802308

    Article  CAS  Google Scholar 

  47. Martini P, Boschi A, Cicoria G et al (2016) A solvent-extraction module for cyclotron production of high-purity technetium-99m. Appl Radiat Isot 118:302–307. https://doi.org/10.1016/j.apradiso.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  48. Martini P, Boschi A, Cicoria G et al (2018) In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals. Appl Radiat Isot 139:325–331. https://doi.org/10.1016/j.apradiso.2018.05.033

    Article  CAS  PubMed  Google Scholar 

  49. European Pharmacopoeia 9.3. Sodium pertechnetate (99mTc) injection (accelerator produced). 01/2018: 2891, 4801−4803 (published online at https://pheur.edqm.eu/home)

  50. Esposito J (2015) “Accelerator-based alternatives to Non-HEU Production of Tc-99m” in the Final report of the coordinated research project on "Accelerator-based Alternatives to Non-HEU Production of Mo-99 /Tc-99m ". https://www-pub.iaea.org/MTCD/Publications/PDF/SupplementaryMaterials/P1743_Supporting_material_web.pdf. Accessed 1 March 2023

  51. Skliarova H, Buso P, Carturan S et al (2019) Recovery of molybdenum precursor material in the cyclotron-based technetium-99m production cycle. Instruments 3:17. https://doi.org/10.3390/instruments3010017

    Article  CAS  Google Scholar 

  52. Martini P, Uccelli L, Duatti A et al (2021) Highly efficient micro-scale liquid-liquid in-flow extraction of 99mTc from molybdenum. Molecules 26:5699. https://doi.org/10.3390/molecules26185699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martini P, Adamo A, Syna N et al (2019) Perspectives on the use of liquid extraction for radioisotope purification. Molecules 24:334. https://doi.org/10.3390/molecules24020334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martini P, Boschi A, Marvelli L et al (2021) Synthesis and characterization of manganese dithiocarbamate complexes: new evidence of dioxygen activation. Molecules 26:5954. https://doi.org/10.3390/molecules26195954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sguizzato M, Martini P, Marvelli L et al (2022) Synthetic and nanotechnological approaches for a diagnostic use of manganese. Molecules 27:3124. https://doi.org/10.3390/molecules27103124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reale G, Calderoni F, Ghirardi T et al (2023) Development and evaluation of the magnetic properties of a new manganese (II) complex: a potential MRI contrast agent. Int J Mol Sci 24:3461. https://doi.org/10.3390/ijms24043461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boschi A, Martini P, Costa V, et al (2019) Interdisciplinary tasks in the cyclotron production of radiometals for medical applications. The Case of 47Sc as example. molecules 24:444. https://doi.org/10.3390/molecules24030444

  58. Sciacca G, Sinico M, Cogo G, et al (2022) Experimental and numerical characterization of pure copper heat sinks produced by laser powder bed fusion. Materials Design 214:110415. https://doi.org/10.1016/j.matdes.2022.110415

  59. Sciacca G (2023) Feasibility study of a new target system for high power radioisotopes production. Ph.D. Thesis, Università degli Studi di Padova

  60. Sciacca G, Martini P, Cisternino S et al (2021) A universal cassette-based system for the dissolution of solid targets. Molecules 26:6255. https://doi.org/10.3390/molecules26206255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dellepiane G, Casolaro P, Favaretto C, et al (2022) Cross section measurement of terbium radioisotopes for an optimized 155Tb production with an 18 MeV medical PET cyclotron. Appl Radiat Isotopes 184:110175. https://doi.org/10.1016/j.apradiso.2022.110175

  62. Favaretto C, Talip Z, Borgna F et al (2021) Cyclotron production and radiochemical purification of terbium-155 for SPECT imaging. EJNMMI Radiopharmacy Chem 6:37. https://doi.org/10.1186/s41181-021-00153-w

    Article  CAS  Google Scholar 

  63. Colucci M, Carminati S, Haddad F et al (2022) Excitation functions of deuteron induced nuclear reactions on dysprosium targets for the production of the theranostic relevant isotopes of terbium. Eur Phys J Plus 137:1180. https://doi.org/10.1140/epjp/s13360-022-03378-z

    Article  CAS  Google Scholar 

  64. Colombi A, Carante MP, Barbaro F et al (2022) Production of high-purity 52gMn from natV targets with alpha beams at cyclotrons. Nucl Technol 208:735–752. https://doi.org/10.1080/00295450.2021.1947122

    Article  Google Scholar 

  65. PRISMAP Public event and User Forum meeting—23 November 2022—Legnaro. In: PRISMAP. https://www.prismap.eu/news/events-feed/whats-next/index.php. Accessed 29 Mar 2023

  66. NuDat 3. In: NNDC, “National Nuclear Data Center NuDat (3.0) at Brookhaven National Laboratory". https://www.nndc.bnl.gov/nudat3/

Download references

Acknowledgements

Authors would like to acknowledge Prof. G. Fiorentini and Prof. A. Duatti for the support since the early stages of LARAMED project, all the INFN-LNL colleagues and the LARAMED collaborators for the fruitful discussions, the ARRONAX and Bern staff for the assistance during the experimental runs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Pupillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupillo, G., Boschi, A., Cisternino, S. et al. The LARAMED project at INFN-LNL: review of the research activities on medical radionuclides production with the SPES cyclotron. J Radioanal Nucl Chem 333, 1487–1496 (2024). https://doi.org/10.1007/s10967-023-09075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09075-0

Keywords

Navigation