Skip to main content
Log in

Facile immobilization of NiFeAl-LDHs into electrospun poly(vinyl alcohol)/poly(acrylic acid) nanofibers for uranium adsorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Effective recovery of uranium from wastewater has positive significance to environmental treatment and the development of the nuclear industry. Through electrospinning technology, the ternary layered double hydroxide (NiFeAl-LDHs), polyvinyl alcohol (PVA) and polyacrylic acid (PAA) was used as the precursor solution to produce NiFeAl-LDHs/PVA/PAA composite nanofibers, and it can adsorb uranium under weak acid conditions. The material structure and character of the prepared fiber were analyzed by SEM, FT-IR, XRD and XPS, besides the various factors on the adsorption of uranium by the fiber under static adsorption were studied. The adsorption process of NiFeAl-LDHs/PVA/PAA to U(VI) conformed to the pseudo-second-order model (R2 > 0.998). The maximum theoretical adsorption capacity of U(VI) on NiFeAl-LDHs/PVA/PAA was 203.32 mg/g at pH 6.0 calculated by the Langmuir model. The value of thermodynamic parameters showed that the adsorption process of uranium on NiFeAl-LDHs/PVA/PAA was endothermic and spontaneous. NiFeAl-LDHs/PVA/PAA can still effectively adsorb uranium after passing five adsorption–desorption cycle tests. Therefore, NiFeAl-LDHs/PVA/PAA was expected to be used in practical applications to treat uranium-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang S, Ran Y, Lu B, Li J, Kuang H, Gong L, Hao Y (2020) A Review of uranium-induced reproductive toxicity. Biol Trace Elem Res 196(1):204–213

    Article  CAS  PubMed  Google Scholar 

  2. Gao N, Huang Z, Liu H, Hou J, Liu X (2019) Advances on the toxicity of uranium to different organisms. Chemosphere 237:124548

    Article  CAS  PubMed  Google Scholar 

  3. Bjørklund G, Pivina L, Dadar M, Semenova Y, Rahman MM, Chirumbolo S, Aaseth J (2020) Depleted uranium and Gulf War Illness: updates and comments on possible mechanisms behind the syndrome. Environ Res 181:108927

    Article  PubMed  CAS  Google Scholar 

  4. Faa A, Gerosa C, Fanni D, Floris G, Eyken PV, Lachowicz JI, Nurchi VM (2018) Depleted uranium and human health. Curr Med Chem 25(1):49–64

    Article  CAS  PubMed  Google Scholar 

  5. Bjorklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S (2020) Uranium in drinking water: a public health threat. Arch Toxicol 94(5):1551–1560

    Article  PubMed  CAS  Google Scholar 

  6. Lourenco J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Goncalves F, Pereira R, Mendo S (2017) Uranium mining wastes: the use of the fish embryo acute toxicity test (FET) test to evaluate toxicity and risk of environmental discharge. Sci Total Environ 605:391–404

    Article  PubMed  CAS  Google Scholar 

  7. Ouyang J, Liu Z, Zhang L, Wang Y, Zhou L (2020) Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process Saf Environ 139:124–132

    Article  CAS  Google Scholar 

  8. Ouyang J, Liu Z, Ye T, Zhang L (2019) Uranium pollution status and speciation analysis in the farmland-rice system around a uranium tailings mine in southeastern China. J Radioanal Nucl Ch 322(2):1011–1022

    Article  CAS  Google Scholar 

  9. Selvakumar R, Ramadoss G, Menon MP, Rajendran K, Thavamani P, Naidu R, Megharaj M (2018) Challenges and complexities in remediation of uranium contaminated soils: a review. J Environ Radioactiv 192:592–603

    Article  CAS  Google Scholar 

  10. Sun Y, Li Y (2021) Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review. Environ Pollut 278:116861

  11. Xue G, Yurun F, Li M, Dezhi G, Jie J, Jincheng Y, Haibin S, Hongyu G, Yujun Z (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60

    Article  CAS  Google Scholar 

  12. Rosenberg E, Pinson G, Tsosie R, Tutu H, Cukrowska E (2016) Uranium remediation by ion exchange and sorption methods: a critical review various types of solid phase sorbents are studied and evaluated. Johnson Matthey Tech 60(1):59–77

    Article  Google Scholar 

  13. Li L, Zhao Y, Jin Y, Linghu W, Chen C, Asiri AM, Marwani HM, Sheng G (2019) Efficient scavenging of uranium (VI) using porous hexagonal boron nitride by a combined process of surface adsorption and induced precipitation crystallization. J Radioanal Nucl Ch 321(3):1035–1044

    Article  CAS  Google Scholar 

  14. Geran S, Chamelot P, Serp J, Gibilaro M, Massot L (2020) Electrochemistry of uranium in molten LiCl-LiF. Electrochim Acta 355:136784

    Article  CAS  Google Scholar 

  15. He S, Yang Z, Cui X, Zhang X, Niu X (2020) Fabrication of the novel Ag-doped SnS2@ InVO4 composite with high adsorption-photocatalysis for the removal of uranium (VI). Chemosphere 260:127548

    Article  CAS  PubMed  Google Scholar 

  16. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241

    Article  CAS  Google Scholar 

  17. Wu J, Tian K, Wang J (2018) Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog Nucl Energ 106:79–86

    Article  CAS  Google Scholar 

  18. Lyu P, Wang G, Cao Y, Wang B, Deng N (2021) Phosphorus-modified biochar cross-linked Mg–Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil. Chemosphere 276:130116

    Article  PubMed  CAS  Google Scholar 

  19. Tatarchuk T, Shyichuk A, Mironyuk I, Naushad M (2019) A review on removal of uranium (VI) ions using titanium dioxide based sorbents. J Mol Liquids 293:111563

    Article  CAS  Google Scholar 

  20. Yang W, Pan Q, Song S, Zhang H (2019) Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg Chem Front 6(8):1924–1937

    Article  CAS  Google Scholar 

  21. Wu H, Chi F, Zhang S, Wen J, Xiong J, Hu S (2019) Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Microporous and Mesoporous Mater 288:109567

    Article  CAS  Google Scholar 

  22. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    Article  CAS  PubMed  Google Scholar 

  23. Yu S, Wang X, Liu Y, Chen Z, Wu Y, Liu Y, Pang H, Song G, Chen J, Wang X (2019) Efficient removal of uranium(VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies. Chem Eng J 365:51–59

    Article  CAS  Google Scholar 

  24. Naeem H, Bhatti HN, Sadaf S, Iqbal M (2017) Uranium remediation using modified Vigna radiata waste biomass. Appl Radiat Isotopes 123:94–101

    Article  CAS  Google Scholar 

  25. Yi Z, Liu J, Zeng R, Liu X, Long J, Huang B (2020) Removal of uranium(VI) from aqueous solution by Camellia oleifera shell-based activated carbon: adsorption equilibrium, kinetics, and thermodynamics. Water Sci Technol 82(11):2592–2602

    Article  CAS  PubMed  Google Scholar 

  26. Singhal P, Vats BG, Pulhani V (2020) Magnetic nanoparticles for the recovery of uranium from sea water: challenges involved from research to development. J Ind Eng Chem 90:17–35

    Article  CAS  Google Scholar 

  27. Calì E, Qi J, Preedy O, Chen S, Boldrin D, Branford WR, Vandeperre L, Ryan MP (2018) Functionalised magnetic nanoparticles for uranium adsorption with ultra-high capacity and selectivity. J Mater Chem A 6(7):3063–3073

    Article  Google Scholar 

  28. Zhu F, Zheng YM, Zhang BG, Dai YR (2021) A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater 401:123608

  29. Bode-Aluko CA, Pereao O, Ndayambaje G, Petrik L (2016) Adsorption of Toxic Metals on Modified Polyacrylonitrile Nanofibres: A Review. Water Air Soil Poll 228(1):1–11

    Google Scholar 

  30. Hu X, Wang Y, Yang JO, Li Y, Wu P, Zhang H, Yuan D, Liu Y, Wu Z, Liu Z (2020) Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Front Chem Sci Eng 14(6):1029–1038

    Article  CAS  Google Scholar 

  31. Christou C, Philippou K, Krasia-Christoforou T, Pashalidis I (2019) Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers. Carbohyd Polym 219:298–305

    Article  CAS  Google Scholar 

  32. Gebru KA, Das C (2017) Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J Water Process Eng 16:1–13

    Article  Google Scholar 

  33. Wang Y, Zhang Y, Li Q, Li Y, Cao L, Li W (2020) Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohyd Polym 245:116627

    Article  CAS  Google Scholar 

  34. Wang F, Song Y, Liang S, Yu Y, Liang J, Jiang M (2021) Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction. React Funct Polym 159:104812

    Article  CAS  Google Scholar 

  35. Talebi M, Abbasizadeh S, Keshtkar AR (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf Environ 109:340–356

    Article  CAS  Google Scholar 

  36. Xie J, Lv R, Peng H, Fan J, Liu Y (2020) Phosphate functionalized poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA): an electrospinning nanofiber for uranium separation. J Radioanal Nucl Ch 326(1):475–486

    Article  CAS  Google Scholar 

  37. Zulfikar MA, Maulina D, Nasir M, Handayani N, Handajani M (2020) Removal of methylene blue from aqueous solution using poly (acrylic acid)/SiO2 and functionalized poly (acrylic acid)/SiO2 composite nanofibers. Environ Nanotechnol Monitoring Manag 14:100381

    Article  Google Scholar 

  38. Park JA, Kang JK, Lee SC, Kim SB (2017) Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Adv 7(29):18075–18084

    Article  CAS  Google Scholar 

  39. Xiao SL, Luo XY, Peng QY, Deb H (2016) Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fiber Polym 17(9):1428–1437

    Article  CAS  Google Scholar 

  40. Zhang SJ, Shi QT, Christodoulatos C, Korfiatis G, Meng XG (2019) Adsorptive filtration of lead by electrospun PVA/PAA nanofiber membranes in a fixed-bed column. Chem Eng J 370:1262–1273

    Article  CAS  Google Scholar 

  41. Kim J, Kang T, Kim H, Shin HJ, Oh S-G (2019) Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu(II) adsorbent. J Ind Eng Chem 77:273–279

    Article  CAS  Google Scholar 

  42. Xiao SL, Ma H, Shen MW, Wang SY, Huang QG, Shi XY (2011) Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloid Surface A 381(1–3):48–54

    Article  CAS  Google Scholar 

  43. Song S, Yin L, Wang XX, Liu L, Huang SY, Zhang R, Wen T, Yu SJ, Fu D, Hayat T, Wang XK (2018) Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chem Eng J 338:579–590

    Article  CAS  Google Scholar 

  44. Wang PY, Yin L, Wang XX, Zhao GX, Yu SJ, Song G, Xie J, Alsaedi A, Hayat T, Wang XK (2018) L-cysteine intercalated layered double hydroxide for highly efficient capture of U(VI) from aqueous solutions. J Environ Manage 217:468–477

    Article  CAS  PubMed  Google Scholar 

  45. Karami Z, Jouyandeh M, Ali JA, Ganjali MR, Aghazadeh M, Maadani M, Saeb MR (2019) Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Prog Org Coat 136:105264

    Article  CAS  Google Scholar 

  46. Zou YD, Wang XX, Wu F, Yu SJ, Hu YZ, Song WC, Liu YH, Wang HQ, Hayat T, Wang XK (2017) Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain Chem Eng 5(1):1173–1185

    Article  CAS  Google Scholar 

  47. Butenko E, Bish D, Abrosimova G, Kapustin A (2013) Comparison of sorption properties of natural and synthetic takovites, Ni6Al2(OH)16CO3·4H2O. Építőanyag: JSBCM 65(4):97–101

  48. Valeikiene L, Roshchina M, Grigoraviciute-Puroniene I, Prozorovich V, Zarkov A, Ivanets A, Kareiva A (2020) On the Reconstruction Peculiarities of Sol-Gel Derived Mg2-xMx/Al1(M = Ca, Sr, Ba) Layered Double Hydroxides. Curr Comput-Aided Drug Des 10(6):470

    CAS  Google Scholar 

  49. Li Y, He H, Liu Z, Lai Z, Wang Y (2021) A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium (VI) and thorium (IV) adsorption. J Radioanal Nuclear Chem 328(1):289–298

    Article  CAS  Google Scholar 

  50. Aslani CK, Amik O (2021) Active Carbon/PAN composite adsorbent for uranium removal: Modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl Radiation and Isotopes 168:109474

    Article  CAS  Google Scholar 

  51. Hu R, Xiao J, Wang T, Chen G, Chen L, Tian X (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    Article  CAS  Google Scholar 

  52. Li P, Chen P, Liu Z, Nie S, Wang X, Wang G, Wang L (2020) Highly efficient elimination of uranium from wastewater with facilely synthesized Mg-Fe layered double hydroxides: Optimum preparation conditions and adsorption kinetics. Anna Nuclear Energy 140:107140

    Article  CAS  Google Scholar 

  53. Huang Y, Zheng H, Li H, Zhao C, Zhao R, Li S (2020) Highly selective uranium adsorption on 2-phosphonobutane-1, 2, 4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles. Chem Eng J 388:124349

    Article  CAS  Google Scholar 

  54. Liu L, Lin XY, Li MS, Chu HH, Wang HY, Xie Y, Du ZC, Liu MJ, Liang LL, Gong HY, Zhou J, Li ZG, Luo XG (2021) Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium(VI) adsorption. J Radioanal Nucl Ch 327(1):73–89

    Article  CAS  Google Scholar 

  55. Wang Y, Li YX, Li L, Kong FG, Lin S, Wang ZQ, Li WL (2020) Preparation of three-dimensional fiber-network chitosan films for the efficient treatment of uranium-contaminated effluents. Water Sci Technol 81(1):52–61

    Article  CAS  PubMed  Google Scholar 

  56. Yang S, Li Q, Chen L, Chen Z, Hu B, Wang H, Wang X (2020) Synergistic removal and reduction of U (VI) and Cr (VI) by Fe3S4 micro-crystal. Chem Eng J 385:123909

    Article  CAS  Google Scholar 

  57. Alahabadi A, Singh P, Raizada P, Anastopoulos I, Sivamani S, Dotto GL, Hosseini-Bandegharaei A (2020) Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf A Physicochem Eng Aspects 607:125516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by National Natural Science Foundation of China (21866003, 22066001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Dai or Yuhui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Dai, Y., Wang, Y. et al. Facile immobilization of NiFeAl-LDHs into electrospun poly(vinyl alcohol)/poly(acrylic acid) nanofibers for uranium adsorption. J Radioanal Nucl Chem 329, 1103–1117 (2021). https://doi.org/10.1007/s10967-021-07860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07860-3

Keywords

Navigation