Skip to main content
Log in

Isolating trace fission product elements in separated plutonium for applications in nuclear forensics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A chemical methodology has been selected to isolate and concentrate select trace fission product (FP) elements from separated Pu for nuclear forensics. The methodology employs several different resins and eluents to chromatographically separate U and the FP elements of interest into their own fractions. The U, rare-earth element, Cs, and Ba fractions were isolated with relative yields of ≥ 73.8%, ≥ 80.7%, ≥ 98.5%, and ≥ 98.0%, respectively. The methodology was able to successively isolate select FP elements on the order of 10–10 g out of much larger samples of Pu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Oorschot RAH, Szkuta B, Meakin GE, Kokshoorn B, Goray M (2019) DNA transfer in forensic science: a review. Forensic Sci Int Genet 38:140–166. https://doi.org/10.1016/j.fsigen.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  2. Keegan E, Kristo MJ, Toole K, Kips R, Young E (2016) Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. Anal Chem 88(3):1496–1505. https://doi.org/10.1021/acs.analchem.5b02915

    Article  CAS  PubMed  Google Scholar 

  3. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassata WS, Hutcheon ID (2016) Nuclear forensic science: analysis of nuclear material out of regulatory control. Annu Rev Earth Planet Sci 44(1):555–579. https://doi.org/10.1146/annurev-earth-060115-012309

    Article  CAS  Google Scholar 

  4. Muehlethaler C, Leona M, Lombardi JR (2016) Review of surface enhanced raman scattering applications in forensic science. Anal Chem 88(1):152–169. https://doi.org/10.1021/acs.analchem.5b04131

    Article  CAS  PubMed  Google Scholar 

  5. Owens PN, Blake WH, Gaspar L, Gateuille D, Koiter AJ, Lobb DA, Petticrew EL, Reiffarth DG, Smith HG, Woodward JC (2016) Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Sci Rev 162:1–23. https://doi.org/10.1016/j.earscirev.2016.08.012

    Article  CAS  Google Scholar 

  6. Schwantes JM, Douglas M, Bonde SE, Briggs JD, Farmer OT, Greenwood LR, Lepel EA, Orton CR, Wacker JF, Luksic AT (2009) Nuclear archeology in a bottle: evidence of pre-Trinity U.S. weapons activities from a waste burial site. Anal Chem 81(4):1297–1306. https://doi.org/10.1021/ac802286a

    Article  CAS  PubMed  Google Scholar 

  7. Loveland WD, Morrissey DJ, Seaborg GT (2017) Nuclear forensics. In: Modern nuclear chemistry, 2nd edn. Wiley, Hoboken, pp 663–682. doi:https://doi.org/10.1002/9781119348450.ch20

  8. Osborn JM, Glennon KJ, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2018a) Computational and experimental forensics characterization of weapons-grade plutonium produced in a thermal neutron environment. Nucl Eng Technol 50(6):820–828. https://doi.org/10.1016/j.net.2018.04.017

    Article  CAS  Google Scholar 

  9. Glennon KJ, Osborn JM, Burns JD, Kitcher ED, Chirayath SS, Folden CM (2019) Measuring key Sm isotope ratios in irradiated UO2 for use in plutonium discrimination nuclear forensics. J Radioanal Nucl Chem 320(2):405–414. https://doi.org/10.1007/s10967-019-06486-w

    Article  CAS  Google Scholar 

  10. Osborn JM, Glennon KJ, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2018b) Experimental validation of a nuclear forensics methodology for source reactor-type discrimination of chemically separated plutonium. Nucl Eng Technol 51(2):384–393. https://doi.org/10.1016/j.net.2018.11.003

    Article  CAS  Google Scholar 

  11. Osborn JM, Kitcher ED, Burns JD, Folden CM III, Chirayath SS (2017) Nuclear forensics methodology for reactor-type attribution of chemically separated plutonium. Nucl Technol 201:1–10. https://doi.org/10.1080/00295450.2017.1401442

    Article  Google Scholar 

  12. Swinney MW, Folden CM III, Ellis RJ, Chirayath SS (2017) Experimental and computational forensics characterization of weapons-grade plutonium produced in a fast reactor neutron environment. Nucl Technol 197(1):1–11. https://doi.org/10.13182/NT16-76

    Article  Google Scholar 

  13. Mendoza PM, Chirayath SS, Folden CM III (2016) Fission product decontamination factors for plutonium separated by PUREX from low-burnup, fast-neutron irradiated depleted UO2. Appl Radiat Isot 118:38–42. https://doi.org/10.1016/j.apradiso.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  14. Chirayath SS, Osborn JM, Coles TM (2015) Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Sci Glob Secur 23(1):48–67. https://doi.org/10.1080/08929882.2015.996079

    Article  Google Scholar 

  15. Moody KJ, Hutcheon ID, Grant PM (2015) Nuclear forensic analysis. CRC Press, Boca Raton

    Google Scholar 

  16. Kristo MJ, Tumey SJ (2013) The state of nuclear forensics. Nucl Instrum Methods Phys Res B 294:656–661. https://doi.org/10.1016/j.nimb.2012.07.047

    Article  CAS  Google Scholar 

  17. Stanley FE, Stalcup AM, Spitz HB (2013) A brief introduction to analytical methods in nuclear forensics. J Radioanal Nucl Chem 295(2):1385–1393. https://doi.org/10.1007/s10967-012-1927-3

    Article  CAS  Google Scholar 

  18. May M, Abedin-Zadeh R, Barr D, Carnesale A, Coyle P, Davis J, Dorland W, Dunlop W, Fetter S, Glaser A, Hutcheon I, Slakey F, Tannenbaum B (2008) Nuclear forensics: role, state of the art, program needs. Joint report from the American Physical Society and the American Association for the Advancement of Science

  19. Kips R, Weber PK, Kristo MJ, Jacobsen B, Ramon EC (2019) Microscale isotopic variation in uranium fuel pellets with implications for nuclear forensics. Anal Chem 91(18):11598–11605. https://doi.org/10.1021/acs.analchem.9b01737

    Article  CAS  PubMed  Google Scholar 

  20. Varga Z, Nicholl A, Zsigrai J, Wallenius M, Mayer K (2018) Methodology for the preparation and validation of plutonium age dating materials. Anal Chem 90(6):4019–4024. https://doi.org/10.1021/acs.analchem.7b05204

    Article  CAS  PubMed  Google Scholar 

  21. Savina JA, Steeb JL, Savina MR, Mertz CJ, Fortner JA, Sullivan VS, Bennett ME, Chamberlain DB (2017) A non-destructive internal nuclear forensic investigation at Argonne: discovery of a Pu planchet from 1948. J Radioanal Nucl Chem 311(1):243–252. https://doi.org/10.1007/s10967-016-4893-3

    Article  CAS  Google Scholar 

  22. Rim JH, Kuhn KJ, Tandon L, Xu N, Porterfield DR, Worley CG, Thomas MR, Spencer KJ, Stanley FE, Lujan EJ, Garduno K, Trellue HR (2017) Determination of origin and intended use of plutonium metal using nuclear forensic techniques. Forensic Sci Int 273(Supplement C):e1–e9. https://doi.org/10.1016/j.forsciint.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Favalli A, Vo D, Grogan B, Jansson P, Liljenfeldt H, Mozin V, Schwalbach P, Sjöland A, Tobin SJ, Trellue H, Vaccaro S (2016) Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden. Nucl Instrum Methods Phys Res A 820(Supplement C):102–111. https://doi.org/10.1016/j.nima.2016.02.072

    Article  CAS  Google Scholar 

  24. Byerly BL, Stanley F, Spencer K, Colletti L, Garduno K, Kuhn K, Lujan E, Martinez A, Porterfield D, Rim J, Schappert M, Thomas M, Townsend L, Xu N, Tandon L (2016) Forensic investigation of plutonium metal: a case study of CRM 126. J Radioanal Nucl Chem 310(2):623–632. https://doi.org/10.1007/s10967-016-4919-x

    Article  CAS  Google Scholar 

  25. Varga Z, Nicholl A, Wallenius M, Mayer K (2016) Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 307:1919–1926. https://doi.org/10.1007/s10967-015-4418-5

    Article  CAS  PubMed  Google Scholar 

  26. Lantzos I, Kouvalaki C, Nicolaou G (2015) Plutonium fingerprinting in nuclear forensics of spent nuclear fuel. Prog Nucl Energy 85:333–336. https://doi.org/10.1016/j.pnucene.2015.07.002

    Article  CAS  Google Scholar 

  27. Wallenius M, Lützenkirchen K, Mayer K, Ray I, de las Heras LA, Betti M, Cromboom O, Hild M, Lynch B, Nicholl A, Ottmar H, Rasmussen G, Schubert A, Tamborini G, Thiele H, Wagner W, Walker C, Zuleger E (2007) Nuclear forensic investigations with a focus on plutonium. J Alloys Compd 444–445:57–62. https://doi.org/10.1016/j.jallcom.2006.10.161

    Article  CAS  Google Scholar 

  28. Wallenius M, Peerani P, Koch L (2000) Origin determination of plutonium material in nuclear forensics. J Radioanal Nucl Chem 246(2):317–321. https://doi.org/10.1023/A:1006774524272

    Article  CAS  Google Scholar 

  29. Kitcher ED, Osborn JM, Chirayath SS (2019) Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons grade plutonium. Nucl Eng Technol 51(5):1355–1364. https://doi.org/10.1016/j.net.2019.02.019

    Article  CAS  Google Scholar 

  30. Loveland WD, Morrissey DJ, Seaborg GT (2017) Nuclear reactor chemistry. In: Modern nuclear chemistry, 2nd edn. Wiley, Hoboken. doi:https://doi.org/10.1002/9781119348450.ch15

  31. Birkett JE, Carrott MJ, Fox OD, Jones CJ, Maher CJ, Roube CV, Taylor RJ, Woodhead DA (2005) Recent developments in the Purex process for nuclear fuel reprocessing: complexant based stripping for uranium/plutonium separation. Chimia 59(12):898–904. https://doi.org/10.2533/000942905777675327

    Article  CAS  Google Scholar 

  32. Gray LW, Holliday KS, Murray A, Thompson M, Thorp DT, Yarbro S, Venetz TJ (2015) Separation of plutonium from irradiated fuels and targets. Lawrence Livermore National Laboratory, Livermore

    Book  Google Scholar 

  33. Goddard B, Solodov A, Fedchenko V (2016) IAEA “significant quantity” values: time for a closer look? Nonprolif Rev 23(5–6):677–689. https://doi.org/10.1080/10736700.2017.1339934

    Article  Google Scholar 

  34. Kołacińska K, DeVol TA, Seliman AF, Dudek J, Trojanowicz M (2020) Sequential injection analysis system with DGA resin for sample pretreatment in ICP-MS determination of 239Pu in nuclear industry samples. Microchem J 152:104426. https://doi.org/10.1016/j.microc.2019.104426

    Article  CAS  Google Scholar 

  35. Nl B, Lützenkirchen K, Malmbeck R, Nichol A (2019) A method for the mg scale separation of curium(III) from americium(III) by HPLC using a SCX column. J Radioanal Nucl Chem 321(3):841–849. https://doi.org/10.1007/s10967-019-06653-z

    Article  CAS  Google Scholar 

  36. Roach BD, Fenske EK, Glasgow DC, Partridge JD, Keever TJ, Giaquinto JM (2019) Rapid concentration and isotopic measurements of ultra-trace 235U fission products with comparison to an ORIGEN isotope depletion model. Talanta 205:120079. https://doi.org/10.1016/j.talanta.2019.06.079

    Article  CAS  PubMed  Google Scholar 

  37. Guéguen F, Isnard H, Nonell A, Vio L, Vercouter T, Chartier F (2015) Neodymium isotope ratio measurements by LC-MC-ICPMS for nuclear applications: investigation of isotopic fractionation and mass bias correction. J Anal At Spectrom 30(2):443–452. https://doi.org/10.1039/C4JA00361F

    Article  CAS  Google Scholar 

  38. Russell BC, Croudace IW, Warwick PE, Milton JA (2014) Determination of precise 135Cs/137Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 86(17):8719–8726. https://doi.org/10.1021/ac501894a

    Article  CAS  PubMed  Google Scholar 

  39. Russell BC, Croudace IW, Warwick PE (2015) Determination of 135Cs and 137Cs in environmental samples: a review. Anal Chim Acta 890:7–20. https://doi.org/10.1016/j.aca.2015.06.037

    Article  CAS  PubMed  Google Scholar 

  40. Bu W, Zheng J, Liu X, Long K, Hu S, Uchida S (2016) Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: a review of methodology and applications. Spectrochim Acta B Atom Spec 119:65–75. https://doi.org/10.1016/j.sab.2016.03.008

    Article  CAS  Google Scholar 

  41. Philip Horwitz E, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10(2):313–336. https://doi.org/10.1080/07366299208918107

    Article  Google Scholar 

  42. Marsh SF, Alarid JE, Hamond CF, McLeod MJ, Roensch FR, Rein JE (1978) Cation exchange of 53 elements in nitric acid. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  43. Faris JP, Buchanan RF (1964) Anion exchange characteristics of the elements in nitric acid medium. Anal Chem 36(6):1157–1158. https://doi.org/10.1021/ac60212a067

    Article  CAS  Google Scholar 

  44. Ryan JL, Wheelwright EJ (1959) The recovery, purification, and concentration of plutonium by anion exchange in nitric acid. Hanford Atomic Products Operation, Richland

    Google Scholar 

  45. Michael B, Michael EW (2011) Isotopic compositions of the elements 2009 (IUPAC technical report). Pure Appl Chem 83(2):397–410. https://doi.org/10.1351/PAC-REP-10-06-02

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was released to the public by Los Alamos National Laboratory under document number LA-UR-20-22960. This work was supported by the Los Alamos National Laboratory Seaborg Institute program and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180. This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Folden III.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2020_7448_MOESM1_ESM.docx

The Supporting Information includes Gamma spectra and counting statistics of the U, REE, Cs, and Ba fractions from the Plutonium-1 separations (PDF) (DOCX 3725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glennon, K.J., Bond, E.M., Bredeweg, T.A. et al. Isolating trace fission product elements in separated plutonium for applications in nuclear forensics. J Radioanal Nucl Chem 327, 143–151 (2021). https://doi.org/10.1007/s10967-020-07448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07448-3

Keywords

Navigation