Skip to main content
Log in

A brief introduction to analytical methods in nuclear forensics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nuclear forensic (NF) techniques are critical in responding to both environmental releases of nuclear materials and illicit trafficking activities involving both nuclear and counterfeit materials. Despite rising need, however, significant barriers exist to the future success of such research. This subset of analytical chemistry contains unique concerns (e.g. chronometry and impurity signatures), a wide variety of preparatory/instrumental approaches, and is in need of innovative solutions to current problems both in and out of the lab. The present work introduces existing NF research, development challenges and notes potential areas for advancement by highlighting several key analytical approaches. Examples of concerns and techniques discussed in this review include: chronometry, reference materials, separations, counting spectrometry, mass spectrometry and more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Occurs when the activity associated with an isotope becomes essentially constant after a given time because of the continued decay of the parent isotope. At this point, parent and daughter activity values are approximately equal.

References

  1. Joint Working Group of the American Physical Society and the American Association for the Advancement of Science (2005) Nuclear forensics: role, state of the art, program needs. Washington, DC

  2. International Atomic Energy Agency (1970) INFCIRC/140: treaty on the non-proliferation of nuclear weapons. Vienna

  3. Grant PM, Moody KJ, Hutcheon ID et al (1998) J Radioanal Nucl Chem 235:129

    Article  CAS  Google Scholar 

  4. Mayer K, Wallenius M, Fanghanel T (2007) J Alloys Compd 444–445:50

    Article  Google Scholar 

  5. Pollanen R, Ketterer ME, Lehto S et al (2006) J Environ Radioact 90:15

    Article  CAS  Google Scholar 

  6. International Atomic Energy Agency (2006) International nuclear security series no. 2, technical guidance: nuclear forensics support reference manual. Vienna

  7. LaMont SP, Hall G (2005) J Radioanal Nucl Chem 264:423

    Article  Google Scholar 

  8. Wallenius M, Mayer K (2000) Fresenius J Anal Chem 366:234

    Article  CAS  Google Scholar 

  9. Mayer K, Wallenius M, Ray I (2005) Analyst 130:43

    Article  Google Scholar 

  10. Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. CRC Press/Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  11. IAEA Interactive Nuclide Database. http://www-nds.iaea.org/relnsd/vchart/index.html. Accessed 1 May 2012

  12. Peehs M, Walter T, Walter S (1996) Ullman’s encyclopedia of industrial chemistry. Wiley-VCH, Cambridge

  13. Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Anal Chem 81:8327

    Article  CAS  Google Scholar 

  14. Svedkauskaite-LeGore J, Rasmussen G, Abousahl S, van Belle P (2008) J Radioanal Nucl Chem 278:201

    Article  CAS  Google Scholar 

  15. Svedkauskaite-LeGore J, Mayer K, Millet S, Nicholl A, Rasmussen G, Galtrunas D (2007) Radiochim Acta 95:601

    Article  CAS  Google Scholar 

  16. Fahey AJ, Ritchie NWM, Newbury DE, Small JA (2010) J Radioanal Nucl Chem 284:575

    Article  CAS  Google Scholar 

  17. Learch RE, Norman RE (1984) Radiochim Acta 36:75

    Google Scholar 

  18. K Rozanski, L Araguas-Araguas, R Gonfiantini (1993) Climate change in continental isotopic records, geophysical records, vol 78. American Geophysical Union

  19. Pajo L, Tamborini G, Rassmusen G, Mayer K, Koch L (2001) Spectrochim Acta B 56:541

    Article  Google Scholar 

  20. Pajo L, Mayer K, Koch L (2001) Fresenius J Anal Chem 371:348

    Article  CAS  Google Scholar 

  21. Tamborini G, Phinney D, Bildstein O, Betti M (2002) Anal Chem 74:6098

    Article  CAS  Google Scholar 

  22. Dolgov J, Bibilashvili YK, Chorokov NA, Schubert A, Janssen G, Mayer K, Koch L (1999) Installation of a database for identification of nuclear material of unknown origin at VNIINM Moscow. In: 21st ESARDA symposium, Sevilla, Spain

  23. Spent fuel isotopic composition database. http://www.nea.fr/sfcompo/. Accessed 1 May 2012

  24. Inn KGW, Kurosaki H, Frechou C et al (2008) Appl Radiat Isot 66:835

    Article  CAS  Google Scholar 

  25. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson D (1993) Anal Chim Acta 281:361

    Article  CAS  Google Scholar 

  26. Lee MH, Park JH, Oh SY, Ahn HJ, Lee CH, Song K, Lee MS (2011) Talanta 86:99

    Article  CAS  Google Scholar 

  27. Moreno J, Vajda N, Danesi PR, Larosa JJ, Zeiller E, Sinojmeri M (1997) J Radioanal Nucl Chem 226:279

    Article  CAS  Google Scholar 

  28. Mellado J, Llaurado M, Rauret G (2001) Anal Chim Acta 443:81

    Article  CAS  Google Scholar 

  29. Sommers J, Cummings D, Giglio J (2009) Advances in automated gas pressurized extraction chromatography (GPEC) separations. 8th International conference on methods and application of radioanalytical chemistry, HI

  30. Goodall P, Lythgoe C (1999) Analyst 124:263

    Article  CAS  Google Scholar 

  31. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of actinide elements. Chapman and Hall, New York

    Book  Google Scholar 

  32. Lozano JC, Fernandez F, Gomez JMG (1999) Appl Radiat Isot 50:475

    Article  CAS  Google Scholar 

  33. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Anal Bioanal Chem 374:379

    Article  CAS  Google Scholar 

  34. Vjada N, Kim CK (2011) Anal Chem 83:4688

    Article  Google Scholar 

  35. Kiliari T, Pashalidis I (2010) J Radioanal Nucl Chem 284:547

    Article  CAS  Google Scholar 

  36. Moody KJ, Grant PM (1999) J Radioanal Nucl Chem 241:157

    Article  CAS  Google Scholar 

  37. Lally AE, Glover KM (1984) Nucl Instrum Methods Phys Res 223:259

    Article  CAS  Google Scholar 

  38. Wolf SF (1998) J Radioanal Nucl Chem 234:207

    Article  Google Scholar 

  39. Sill CW, Willis CP (1966) Anal Chem 38:97

    Article  CAS  Google Scholar 

  40. Mohanty AK, Sengupta D, Das SK, Vjayan V, Saha SK (2004) Radiat Meas 38:153

    Article  CAS  Google Scholar 

  41. Kumar A, Kumar M, Singh B, Sing S (2003) Radiat Meas 36:465

    Article  CAS  Google Scholar 

  42. McMahon CA, Fegan MF, Wong J, Long SC, Ryan TP, Colgan PA (2004) Appl Radiat Isot 60:571

    Article  CAS  Google Scholar 

  43. Huo X, Chen W, He Y, Jones B (2005) Appl Spectrosc Rev 40:245

    Article  Google Scholar 

  44. Wallenius M, Mayer K, Nicholl A, Horta J (2002) Investigation of correlations in some chemical impurities and isotope ratios for nuclear forensic purposes. In: International conference on advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics, Karlsruhe, Germany. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1169_web.pdf. Accessed 1 May 2012

  45. Wyse EJ, Lee SH, LaRosa JJ, Povinec PP, DeMora SJ (2001) J Anal At Spectrom 16:1107

    Article  CAS  Google Scholar 

  46. Becker JS, Dietz HJ (2003) Int J Mass Spectrom 228:127

    Article  CAS  Google Scholar 

  47. Ruster W, Ames F, Kluge HJ et al (1989) Nucl Instrum Methods Phys Res 281:547

    Article  Google Scholar 

  48. Wendt K, Trautmann N, Bushaw A (2000) Nucl Instrum Methods Phys Res B 172:162

    Article  CAS  Google Scholar 

  49. Goode GC, Herrington J, Hall G (1964) Anal Chim Acta 30:109

    Article  CAS  Google Scholar 

  50. Furman H, Schoonover IC (1931) J Am Chem Soc 53:2561

    Article  CAS  Google Scholar 

  51. Bricker CE, Sweetser PB (1953) Anal Chem 25:764

    Article  CAS  Google Scholar 

  52. Davies W, Gray W (1964) Talanta 11:1203

    Article  CAS  Google Scholar 

  53. Tandon L, Kuhn K, Decker D, Porterfield D, Laintz K, Wong A, Holland M, Peterson DS (2009) J Radioanal Nucl Chem 282:565

    Article  CAS  Google Scholar 

  54. Mayer K, Wallenius M (2008) ESARDA Bull 38:44

    Google Scholar 

  55. Newbury D, Joy DC, Echlin P, Fiori CE, Goldstein JI (1986) Advanced scanning electron microscopy and X-ray microanalysis. Plenum, New York

    Google Scholar 

  56. Frontasyeva MV (2011) Phys Part Nucl 42:332

    Article  CAS  Google Scholar 

  57. Weise HP, Gorner W, Hedrich M (2001) Fresenius J Anal Chem 369:8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is LA-UR-12-20816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd E. Stanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, F.E., Stalcup, A.M. & Spitz, H.B. A brief introduction to analytical methods in nuclear forensics. J Radioanal Nucl Chem 295, 1385–1393 (2013). https://doi.org/10.1007/s10967-012-1927-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1927-3

Keywords:

Navigation