Skip to main content
Log in

High-efficiency continuous enrichment of cesium ions using CuFC composite microspheres: dynamic adsorption and mechanism analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, we proposed a novel multi-walled carbon nanotubes (MWCNT) doping strategy. Based on the composite cross-linking effect, CuFC was encapsulated by Calcium alginate (CA), and Polyvinyl alcohol (PVA), and MWCNT were introduced into the pellet-forming process to form composite microsphere with excellent mechanical strength. The composite microsphere was characterized by FT-IR, XRD, SEM, EDS and XPS spectrometry. The composite microsphere filled column has excellent adsorption performance and can be used for continuous adsorption of Cs+. The dynamic adsorption behavior was well fitted by the Thomas model and the Yoon–Nelson model. Therefore, CuFC composite microsphere has promising potential for Cs+ continuous adsorption from radioactive wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig.11
Fig.12
Fig.13
Fig.14
Scheme 1
Fig.15
Fig. 16

Similar content being viewed by others

References

  1. Hu R, Ren XM (2016) Carboxymethyl cellulose modified magnetic bentonite composite for efficient enrichment of radionuclides. RSC Adv 16:65136–65145

    Google Scholar 

  2. Sulin Xiang Xu, Zhang QT, Dai Y (2019) Adsorption of cesium on mesoporous SBA-15 material containing embedded copper hexacyanoferrate. J Radioanal Nucl Chem 320:609–619

    Google Scholar 

  3. Gasper L, Navas A, Walling DE, Machin J, Arozamena JG (2013) Using Cs-137 and Pb-210(ex) assess soil redistribution on slopes at different temporal scales. CATENA 102:46–54

    Google Scholar 

  4. Lizaga I, Gaspar L, Quijano L, Dercon G, Navas A (2019) NDVI Cs-137 and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Paron Catchment (Cordillera Blanca, Peru). Sci Total Environ 651:250–260

    CAS  Google Scholar 

  5. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions- a brief review. RSC Adv 5:71658–71683

    CAS  Google Scholar 

  6. Feng S, Ni Z, Feng S, Zhang Z, Liu S, Wang R, Jiawei Hu (2019) One-step synthesis of magnetic composite UiO-66/Fe3O4/GO for the removal of radioactive cesium ions. J Radioanal Nucl Chem 319:737–748

    CAS  Google Scholar 

  7. Li X, Xuan Wu, Chen J, Ye Li Yu, Yang, (2019) Alginate-enfolded copper hexacyanoferrate graphene oxide granules for adsorption of low-concentration cesium ions from aquatic environment. J Radioanal Nucl Chem 320:655–663

    CAS  Google Scholar 

  8. Ibrahim HA, Hassan HS, Mekhamer HS, Kenawy SH (2019) Difusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder. J Radioanal Nucl Chem 319:1–12

    CAS  Google Scholar 

  9. Yang HJ, Li HY, Zhai JL, Sun L, Zhao Y, Yu HW (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246:10–19

    CAS  Google Scholar 

  10. Kim H, Kim M, Lee W, Kim S (2018) Rapid removal of radioactive cesium by polyacrylonitrile nanofbers containing prussian blue. J Hazard Mater 347:106–113

    CAS  Google Scholar 

  11. Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186:1343–1350

    CAS  Google Scholar 

  12. Zhang N, Chen S, Jiayin Hu, Shi J, Guo Y, Deng T (2020) Robust and recyclable sodium carboxymethyl cellulose–ammonium phosphomolybdate composites for cesium removal from wastewater. RSC Adv 10:6139

    CAS  Google Scholar 

  13. Holdsworth AF, Eccles H, Rowbotham D, Bond G, Kavi PC, Edge R (2019) The effect of gamma irradiation on the ion exchange properties of caesium-selective ammonium phosphomolybdate-polyacrylonitrile (AMP-PAN) composites under spent fuel recycling conditions. Separations 6:2–9

    Google Scholar 

  14. Awual MR, Miyazaki Y, Taguchi T, Shiwaku H, Yaita T (2016) Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chem Eng J 291:128–137

    CAS  Google Scholar 

  15. Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Haggstrom L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G (2016) Structure characterization and properties of K-containing copper hexacyanoferrate inorg. Chem 55:5924–5934

    CAS  Google Scholar 

  16. Soek RN, Schmidt A, Winnischofer H, Vidotti M (2016) Anisotropic behavior of layer-by-layer films using highly disordered copper hexacyanoferrate(II) nanoparticles. Appl Surf Sci 378:253–258

    CAS  Google Scholar 

  17. Shady SA (2009) Selectivity of cesium from fission radionuclides using resorcinol- formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers. J Hazard Mater 167:947–952

    CAS  Google Scholar 

  18. Ojwang DO, Grins J, Wardecki D, Mario V, Viktor R, Lennart H, Tore E, Torbjörn G, Abdelfattah M, Raphaël PH, Gunnar S (2016) Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg Chem 55:5924–5934

    CAS  Google Scholar 

  19. Soek RN, Schmidt A, Winnischofer H, Marcio V (2016) Anisotropic behavior of layer-by-layer films using highly disordered copper hexacyanoferrate (II) nanoparticles. Appl Surf Sci 378:253–258

    CAS  Google Scholar 

  20. Lee HK, Yang DS, Oh W, Choi SJ (2016) Copper ferrocyanide functionalized core-shell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste. J Nanosci Nanotechnol 16:6223–6230

    CAS  PubMed  Google Scholar 

  21. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689

    Google Scholar 

  22. Londono-Hurtado A, Szlufarska I, Bratton R, Morgan D (2012) A review of fission product sorption in carbon structures. J Nucl Mater 426:254–267

    CAS  Google Scholar 

  23. Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC (2009) Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem Eng J 150:25–39

    CAS  Google Scholar 

  24. Egorin A, Tokar E, Zemskova L (2016) Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media. Radiochim Acta 104:1–4

    Google Scholar 

  25. Vashnia S, Tavakoli H, Cheraghali R, Sepehrian H (2014) Supporting of lead hexacyanoferrate on mesoporous MCM-41 and its use as effective adsorbent for strontium: equilibrium, kinetic, and thermodynamic studies. Sep Sci Technol 49:241–248

    CAS  Google Scholar 

  26. Park Y, Kim C, Choi SJ (2014) Selective removal of Cs using copper ferrocyanide incorporated on organically functionalized silica supports. J Radioanal Nucl Chem 303:199–208

    Google Scholar 

  27. Liu HD, Li FZ, Zhao X, Yun GC (2017) Preparing high-loaded potassium cobalt hexacyanoferrate/silica composite for radioactive wastewater treatment. Nucl Technol 165:200–208

    Google Scholar 

  28. Causse J, Tokarev A, Ravaux J, Barré Y (2014) Facile one-pot synthesis of copper hexacyanoferrate nanoparticle functionalised silica monoliths for the selective entrapment of 137Cs. J Mater Chem A 2:9461–9464

    CAS  Google Scholar 

  29. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents–a mini-review. Molecules 20:20582–20613

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Parajuli D, Takahashi A, Noguchi H, Kitajima A, Tanaka H, Takasaki M, Yoshino K, Kawamoto T (2016) Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chem Eng J 283:1322–1328

    CAS  Google Scholar 

  31. Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresour Technol 218:294–300

    CAS  Google Scholar 

  32. Turgis R, Arrachart G, Delchet C, Rey C, Barré Y, Rostaing SP, Guari Y, Larionova J, Grandjean A (2013) An original “click and bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica. Chem Mater 25:4447–4453

    CAS  Google Scholar 

  33. Du ZH, Jia MC, Wang XW (2012) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate(II) composite spheres. J Radioanal Nucl Chem 298:167–177

    Google Scholar 

  34. Vipin AK, Hu BY, Fugetsu B (2013) Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater 258:93–101

    Google Scholar 

  35. Vipin AK, Hu BY, Fugetsu B (2014) Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with MWCNT for both cesium and strontium removal. Carbohydr Polym 111:477–484

    CAS  Google Scholar 

  36. Ke Y, Li Y, Zhu L, Zhou Y, Liu D (2020) Rapid enrichment of cesium ions in aqueous solution by copper ferrocyanide powder. SN Appl Sci. 2:522

    CAS  Google Scholar 

  37. Palágyi Š (2019) Comparison of several models for ftting breakthrough curves of radionuclides transport in crushed rock: groundwater systems. J Radioanal Nucl Chem 321:1067–1071

    Google Scholar 

  38. Ivanets AI, Shashkova IL, Kitikova NV, Morozov Y (2016) The kinetic studies of the cobalt ion removal from aqueous solutions by dolomite-based sorbent. Int J Environ Sci Technol 13:2561–2568

    CAS  Google Scholar 

  39. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpaa M (2017) Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates. Chemosphere 171:348–354

    CAS  Google Scholar 

  40. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    CAS  Google Scholar 

  41. Kim Y, Kim I, Lee TS, Leeb E, Lee KJ (2018) Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. J Ind Eng Chem 60:465–474

    CAS  Google Scholar 

  42. Feng S, Li X, Ma F, Liu R, Guanglei Fu, Xing S, Yue X (2016) Prussian blue functionalized microcapsules for effective removal of cesium in a water environment. RSC Adv 6:34399

    CAS  Google Scholar 

  43. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324:1115–1123

    CAS  Google Scholar 

  44. Maslova M, Mudruk N, Ivanets A, Shashkova I, Kitikova N (2020) A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut Res 27:3933–3949

    CAS  Google Scholar 

  45. Cao LY, Liu YL, Zhang BH, Lu LH (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2:2339–2346

    CAS  Google Scholar 

  46. Biesinger MC, Lau LWM, Gerson AR, Smartb RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part of the project titled “The National Key roject of Research and Development Plan” (Grant No. 2016YFC1402504). The all authors are grateful to financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Ethics declarations

Conflict of interest

The authors declare that there is no any conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, Y., Zhu, L. et al. High-efficiency continuous enrichment of cesium ions using CuFC composite microspheres: dynamic adsorption and mechanism analysis. J Radioanal Nucl Chem 326, 959–973 (2020). https://doi.org/10.1007/s10967-020-07378-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07378-0

Keywords

Navigation