Skip to main content
Log in

Removal of thorium from aqueous solution by adsorption with Cu3(BTC)2

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Cu3(BTC)2(BTC = 1,3,5-benzenetricarboxylic acid) was synthesized by water/solvent heat method. The Cu3(BTC)2 was characterized by SEM/EDS, Zeta potential and XRD. Batch static adsorption experiments investigated the various factors affecting the adsorption of Th(IV) in aqueous solution such as pH, solid–liquid ratio, contact time, initial concentration and temperature, and the adsorption mechanism is also discussed. The adsorption process was in line with the pseudo-second-order kinetic model and the Langmuir isotherm model. At the same time, compared with other adsorbents. The results showed that Cu3(BTC)2 had good adsorption for Th(IV) with a maximum adsorption of 757.58 mg g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiu TY, Liu ZR, Wang Y, Wu P, Du Y, Cai ZW (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem 319(3):1059–1067

    Article  CAS  Google Scholar 

  2. Gu PC, Zhang S, Li X, Wang XX, Wen T, Jehan R, Alsaedi A, Hayat T, Wang XK (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang XK (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  4. Raju ChS, Subramanian MS (2005) DAPPA grafted polymer: an efficient solid phase extractant for U(VI), Th(IV) and La(III) from acidic waste streams and environmental samples. Talanta 67(1):81–89

    Article  CAS  PubMed  Google Scholar 

  5. Pan N, Li L, Ding J, Wang RB, Jin YD, Xia CQ (2017) A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). J Colloid Interface Sci 508:303–312

    Article  CAS  PubMed  Google Scholar 

  6. Iida Y, Yamaguchi T, Tanaka T, Hemmi K (2016) Sorption behavior of thorium onto granite and its constituent minerals. J Nucl Sci Technol 53(10):1573–1584

    Article  CAS  Google Scholar 

  7. Pamukoglu MY, Kirkan B, Senyurt M (2017) Removal of thorium(IV) from aqueous solution by biosorption onto modifed powdered waste sludge: experimental design approach. J Radioanal Nucl Chem 314(1):343–352

    Article  CAS  Google Scholar 

  8. Huang G, Chen Z, Wang L, Lv T, Shi J (2016) Removal of thorium(IV) from aqueous solution using magnetic ion-imprinted chitosan resin. J Radioanal Nucl Chem 310(3):1265–1272

    Article  CAS  Google Scholar 

  9. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68(4):1047–1064

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Lee SW, Catalano JG, Lezama-Pacheco JS, Bargar JR, Tebo BM, Giammar DE (2013) Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47(2):850–858

    Article  CAS  PubMed  Google Scholar 

  11. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the effcient removal of heavy metal ions from aqueous systems. ACS Appl Mater Inter 5(19):9628–9634

    Article  CAS  Google Scholar 

  12. Johnson BE, Santschi PH, Chuang CY, Otosaka S, Addleman RS, Douglas M, Rutledge RD, Chouyyok W, Davidson JD, Fryxell GE, Schwantes JM (2012) Collection of lanthanides and actinides from natural waters with conventional and nanoporous sorbents. Environ Sci Technol 46(20):11251–11258

    Article  CAS  PubMed  Google Scholar 

  13. Jiang D, Liu L, Pan N, Yang F, Li S, Wang R, Wyman IW, Jin Y, Xia C (2015) The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem Eng J 271:147–154

    Article  CAS  Google Scholar 

  14. Hosseini MS, Abedi F (2015) Comparison of adsorption behavior of Th(IV) and U(VI) on mixed-ligands impregnated resin containing antraquinones with that conventional one. J Radioanal Nucl Chem 303:2173–2183

    Article  CAS  Google Scholar 

  15. Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53(13):2016–2033

    Article  CAS  Google Scholar 

  16. Zhao LZ, Zhao YX, Li RS, Wu DH, Xie XY, Ye H, Zhang YZ, Xin QP (2020) Insights into the binding mechanism of 2D copper-tetrakis-(4-carboxyphenyl)-porphyrin metal-organic framework nanosheets with Rhodamine B: spectroscopic and thermodynamics studies. Chem Phys 534:110743

    Article  CAS  Google Scholar 

  17. Zhao GX, Huang XB, Tang ZW, Huang QF, Niu FL, Wang XK (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582

    Article  CAS  Google Scholar 

  18. Senkovska I, Kaskel S (2008) High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Micropor Mesopor Mater 112(1–3):108–115

    Article  CAS  Google Scholar 

  19. Hu J, Cai HP, Ren HQ, Wei YM, Xu ZL, Liu HL, Hu Y (2010) Mixed-Matrix membrane hollow fibers of Cu3(BTC)2MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49(24):12605–12612

    Article  CAS  Google Scholar 

  20. Saemian T, Gharagozlou M, Sadr MH, Naghibi S (2019) Synthesis of CoFe2O4 @Cu3(BTC)2 nanocomposite as a magnetic metal–organic framework. Polyhedron 174:114163

    Article  CAS  Google Scholar 

  21. Yan XL, Komarneni S, Zhang ZQ, Yan ZF (2014) Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Micropor Mesopor Mat 183:69–73

    Article  CAS  Google Scholar 

  22. Hosseini MS, Abedi F (2015) Comparison of adsorption behavior of Th(IV) and U(VI) on mixed-ligands impregnated resin containing antraquinones with that conventional one. J Radioanal Nucl Chem 303(3):2173–2183

    CAS  Google Scholar 

  23. Pathak SK, Tripathi SC, Singh KK, Mahtele AK, Kumar M, Gandhi PM (2014) Removal of americium from aqueous nitrate solutions by sorption onto PC88A-impregnated macroporous polymeric beads. J Hazard Mater 278:464–473

    Article  CAS  PubMed  Google Scholar 

  24. Xu QH, Pan DQ, Wu WS (2015) Efects of pH, ionic strength, humic substances and temperature on Th(IV) sorption onto ZSM5. J Radioanal Nucl Chem 305(2):535–541

    Article  CAS  Google Scholar 

  25. Sun B, Kayal S, Chakraborty A (2014) Study of HKUST (copper benzene-1,3,5-tricarboxylate, cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption: an experimental investigation with GCMC (grand canonical Monte-Carlo) simulation. Energy. 76:419–427

    Article  CAS  Google Scholar 

  26. Aizenberg J (2010) Crystallization in patterns: a bio-inspired approach. Adv Mater 16(15):1295–1302

    Article  CAS  Google Scholar 

  27. Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318(2):823–834

    Article  CAS  Google Scholar 

  28. Yin ZX, Pan DQ, Liu P, Wu HY, Li Z, Wu WS (2018) Sorption behavior of thorium(IV) onto activated bentonite. J Radioanal Nucl Chem 316(1):301–312

    Article  CAS  Google Scholar 

  29. Ilaiyaraja P, Deb AKS, Ponraju D, Ali SM, Venkatraman B (2017) Surface engineering of PAMAM-SDB chelating resin with diglycolamic acid (DGA) functional group for efficient sorption of U(VI) and Th(IV) from aqueous medium. J Hazard Mater 328:1–11

    Article  CAS  PubMed  Google Scholar 

  30. Zhang HX, Wang XY, Liang HH, Tan TS, Wu WS (2016) Adsorption behavior of Th(IV) onto illite: Effect of contact time, pH value, ionic strength, humic acid and temperature. Appl Clay Sci 127–128:35–43

    Google Scholar 

  31. Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61(3):229–242

    Article  CAS  Google Scholar 

  32. Li B, Ma LJ, Tian Y, Yang XD, Li J, Bai CY, Yang XY, Zhang S, Li SJ, Jin YD (2014) A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium. J Hazard Mater 271:41–49

    Article  CAS  PubMed  Google Scholar 

  33. Li SX, Wang L, Peng J, Zhai ML, Shi WQ (2019) Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199

    Article  CAS  Google Scholar 

  34. Sadeek SA, El-Sayed MA, Amine MM, Abd El-Magied MO (2013) A chelating resin containing trihydroxybenzoic acid as the functional group: synthesis and adsorption behavior for Th(IV) and U(VI) ions. J Radioanal Nucl Chem 299(3):1299–1306

    Article  CAS  Google Scholar 

  35. Gök M, Sert Ş, Özevci G, Eral M (2018) Efficient adsorption of Th(IV) from aqueous solution by modified SBA-15 mesoporous silica. Nucl Sci Tech 29(7):1–9

    Article  Google Scholar 

  36. Khalili FI, Aa Khalifa, Al-Banna G (2016) Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan. J Radioanal Nucl Chem 311(2):1375–1392

    Article  CAS  Google Scholar 

  37. Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel Metal-Organic Framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Inter 9(41):36026–36037

    Article  CAS  Google Scholar 

  38. Elsalamouny AR, Desouky OA, Mohamed SA, Galhoum AA (2016) Evaluation of adsorption behavior for U(VI) and Th(IV) ions onto solidified Mannich type material. J Disper Sci Tech 38(6):860–865

    Article  CAS  Google Scholar 

  39. Xiu TY, Liu ZR, Yang LF, Wang Y (2019) Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321(2):671–681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21866006, 11875105), and Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province (20172BCB22020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Liu.

Ethics declarations

Conflict of interest

The authors declare that the have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Liu, Z., Xiu, T. et al. Removal of thorium from aqueous solution by adsorption with Cu3(BTC)2. J Radioanal Nucl Chem 326, 185–192 (2020). https://doi.org/10.1007/s10967-020-07310-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07310-6

Keywords

Navigation