Skip to main content
Log in

Estimation of 47Sc and 177Lu production rates from their natural targets in Kyoto University Research Reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To assess the capability of Kyoto University Research Reactor to supply the domestic needs of medical isotopes, its neutron flux has been fully characterized. The production rates of theranostics radionuclides 177Lu (from 176Lu (n, γ) 177Lu), 176Lu (n, γ) 177mLu/177Lu and 176Yb (n, γ) \(^{177} {\text{Yb}}\mathop{\longrightarrow}\limits{{\beta^{ - } (1.88\;{\text{hr}})}}^{177} {\text{Lu}}\) reactions), and 47Sc (from 46Ca (n, γ) \({^{47} {\text{Ca}}} \mathop{\longrightarrow}\limits^{{\beta^{ - } (4.54\;{\text{d}})}} {^{47} {\text{Sc}}}\) and Ti (n, p) 47Sc) were evaluated. The activity (per gram of target) of 47Sc produced from Ti was found to be 10 times higher than that produced from Ca. Production of 177Lu from the decay of its isomer 177mLu was found to be produce less radioactive wastes than Yb route and can be used as a generator for long-time use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. IAEA (2001) Therapeutic applications of radiopharmaceuticals. In: Proceedings of an international seminar held in Hyderabad, India, 18–22 January 1999. IAEA-TECDOC-1228. International Atomic Energy Agency, Vienna

  2. Yeong CH, Cheng MH, Ng KH (2014) Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 15:845–863

    Article  CAS  Google Scholar 

  3. IAEA (2013) Non-HEU production technologies for molybdenum-99 and technetium 99m. International Atomic Energy Agency, Vienna

    Google Scholar 

  4. Expert review panel on medical isotope production (2009) Report of the Expert Review Panel on Medical Isotope Production, Ottawa

  5. Blaauw M, Ridikas D, Baytelesov S, Bedregal Salas PS, Chakrova Y, Eun-Ha C, Dahalan R, Fortunato AH, Jacimovic R, Kling A, Munoz L, Mohamed NMA, Parkanyi D, Singh T, Van Duong Dong (2017) Estimation of 99Mo production rates from natural molybdenum in research reactors. J Radioannal Nucl Chem 311:409–418

    Article  CAS  Google Scholar 

  6. Liang S, Wang Y, Zhang C, Liu X (2006) Synthesis of amino-modified magnetite nanoparticles coated with Hepama-1 and radiolabeled with 188Re for bio-magnetically targeted radiotherapy. J Radioanal Nucl Chem 269:3–7

    Article  CAS  Google Scholar 

  7. Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16:1925–1933

    CAS  Google Scholar 

  8. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46:13S–17S

    PubMed  Google Scholar 

  9. Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA (2018) Subcellular targeting of theranostic radionuclides. Front Pharmacol 9:996. https://doi.org/10.3389/fphar.2018.00996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10:56

    Article  Google Scholar 

  11. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509

    Article  CAS  Google Scholar 

  12. Palyo RJ, Sinusas AJ, Liu YH (2016) High-sensitivity and high-resolution SPECT/CT systems provide substantial dose reduction without compromising quantitative precision for assessment of myocardial perfusion and function. J Nucl Med 57(6):893–899

    Article  CAS  Google Scholar 

  13. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B et al (2017) Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 376:125–135

    Article  CAS  Google Scholar 

  14. von Eyben FE, Roviello G, Kiljunen T, Uprimny C, Virgolini I, Kairemo K et al (2018) Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging 45:496–508

    Article  Google Scholar 

  15. Dash A, Pillai MRA, Knapp FF (2015) Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging 49:85–107

    Article  CAS  Google Scholar 

  16. Watanabe S, Hashimoto K, Watanabe S, Iida Y, Hanaoka H, Endo K, Ishioka NS (2015) Production of highly purified no-carrier-added 177Lu for radioimmunotherapy. J Radioanal Nucl Chem 303:935–940

    Article  CAS  Google Scholar 

  17. Salek N, Shamsaei M, Maragheh MG, Arani SS, Samani AB (2017) Comparative studies of extraction chromatography and electroamalgamation separation to produce no-carrier added 177Lu by Tehran research reactor. Iran J Nucl Med 25:23–33

    CAS  Google Scholar 

  18. Balasubramanian PS (1994) Separation of carrier-free lutetium177 from neutron irradiated natural ytterbium target. J Radioanal Nucl Chem 185:305–310

    Article  CAS  Google Scholar 

  19. Bhardwaj R, van der Meer A, Das SK, de Bruin M, Gascon J, Wolterbeek HT, Denkova AG, Serra-Crespo P (2017) Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after effects. Sci Rep 7:44242

    Article  CAS  Google Scholar 

  20. Hosseini SF, Sadeghi M, Aboudzadeh MR (2017) Theoretical assessment and targeted modeling of TiO2 in reactor towards the scandium radioisotopes estimation. App Rad Isotopes 127:116–121

    Article  CAS  Google Scholar 

  21. Gizawy MA, Mohamed NMA, Aydia MI, Soliman MA, Shamsel-Din HA (2019) Feasibility study on production of Sc-47 from neutron irradiated Ca target for cancer theranostics applications. Radiochim Acta. https://doi.org/10.1515/ract-2018-3070

    Article  Google Scholar 

  22. Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, Gromov RG, Greene J (2018) Electron linearaccelerator production and purification of 47Sc from titaniumdioxide targets. Appl Radiat Isotopes 131:77–82

    Article  CAS  Google Scholar 

  23. Rane S, Harris JT, Starovoitova VN (2015) 47Ca production for47Ca/47Sc generator system using electron linacs. Appl Radiat Isotopes 97:188–192

    Article  CAS  Google Scholar 

  24. Gizawy MA, Aydia MI, Monem IMA, Shamsel-Din HA, Siyam T (2019) Radiochemical separation of reactor produced Sc-47 from natural calcium target using Poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Appl Radiat Isotopes 105:87–94

    Article  Google Scholar 

  25. Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem 283:389–393

    Article  CAS  Google Scholar 

  26. Soliman M, Mohamed N, Gahen M, Saad E, Yousef SK, Sohsah MA (2011) Implementation of k0-standardization method of the INAA at ETRR-2 research reactor. J Radioanal Nucl Chem 287:629–634

    Article  CAS  Google Scholar 

  27. Albarqi M, Alsulami R, Akyurek T, Graham J (2019) Neutron flux characterization of the beam port of the Missouri University of Science and Technology Reactor. J Radioanal Nucl Chem 321:109–116

    Article  CAS  Google Scholar 

  28. Sahin R, Radulovic V, Linstorm RM, Trkov A (2014) Reevaluation of neutron flux characterization parameters for NIST RT-2 facility. J Radioanal Nucl Chem 300:499–506

    Article  CAS  Google Scholar 

  29. De Corte F, De Wispelaere A (2005) The use of a Zr-Au-Lu alloy for calibrating the irradiation facility in k0-NAA and for general neutron spectrum monitoring. J Radioanal Nucl Chem 263:653–657

    Article  Google Scholar 

  30. Niese S, Birnstein D (1988) Correction of interferences by fast neutrons for determination of sodium in silicon. J Radioanal Nucl Chem 121:3–8

    Article  CAS  Google Scholar 

  31. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Entries/2018/12/10_Update_of_k0-database.html. Accessed 19 June 2019

  32. Dvorakov Z (2007) Production and chemical processing of 177Lu for nuclear medicine at the Munich research reactor FRM-II, Dissertation, Technical University of Munich

  33. Pelowitz DB (2011) MCNPX USER’S MANUAL Version 2.7. 0-LA-CP-11-00438, Los Alamos National Laboratory

  34. Beckurts KH, Wirtz K (1964) Neutron Physics Chap 5. Springer, New York

    Book  Google Scholar 

  35. ElAbd A (2010) Measurements of the thermal neutron cross-sections and resonance integrals for 186 W (n, γ) 187 W and 98Mo (n, γ) 99Mo reactions. J Radioanal Nucl Chem 284:321–326

    Article  CAS  Google Scholar 

  36. Ryves TB (1969) A new thermal neutron flux convention. Metrologia 5:119–124

    Article  CAS  Google Scholar 

  37. Holden NE (1999) Temperature dependence of the Westcott g-factor for neutron reactions in Activation analysis. Pure Appl Chem 71:2309–2315

    Article  CAS  Google Scholar 

  38. Misiak R, Walczak R, Wąs B, Bartyzel M, Mietelski JW, Bilewicz A (2017) 47Sc production development by cyclotron irradiation of 48Ca. J Radioanal Nucl Chem 313:429–434

    Article  CAS  Google Scholar 

  39. IAEA (2003) Manual forreactor produced radioisotopes. IAEA-TECDOC-1340. International Atomic Energy Agency, Vienna

  40. Goncalves IF, Martinho E, Salgado J (2001) Monte Carlo calculation of resonance self-shielding factorsfor epithermal neutron spectra. Radiat Phys Chem 61:461–462

    Article  CAS  Google Scholar 

  41. Tzika F, Stamatelatos IE (2004) Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 213:177–181

    Article  CAS  Google Scholar 

  42. IAEA https://www-nds.iaea.org/relnsd/NdsEnsdf/neutroncs.html. Accessed on 13 August 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Soliman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, M.A., Mohamed, N.M.A., Takamiya, K. et al. Estimation of 47Sc and 177Lu production rates from their natural targets in Kyoto University Research Reactor. J Radioanal Nucl Chem 324, 1099–1107 (2020). https://doi.org/10.1007/s10967-020-07156-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07156-y

Keywords

Navigation