Skip to main content
Log in

Investigation of Se(IV) diffusion in compacted Tamusu clay by capillary method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the first time in laboratory, diffusion parameters of Se(IV) in the clay of Chinese Tamusu region(TMS clay) against compacted density, ionic strength and pH value were obtained by capillary method. Diffusion process can be Simplified by using one-dimensional semi-infinite medium diffusion model. The results show a good similarity with the international literature and meet the internationally recognized range of 10−9–10−12. This work will provide data support and theoretical references for the pre-selection of clay rock sites in China’s high-level radioactive waste deep geological repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stéphane M, Reda Al YuC, Berthe G, Matrayb JM (2020) Study of the permeability in the Opalinus clay series (Mont Terri–Switzerland) using the steady state method in Hassler cell. J Petrol Sci Eng 184:106457

    Article  Google Scholar 

  2. Mijnendonckx K, Miroslav H, Wang L, Jacops E, Provoost A, Mysara M, Wouters K, Craen MD, Leys N (2019) An active microbial community in Boom Clay pore water collected from piezometers impedes validating predictive modelling of ongoing geochemical processes. Appl Geochem 106:149–160

    Article  CAS  Google Scholar 

  3. De Echave T, Tribet M, Gin S, Jégou C (2019) Influence of iron on the alteration of the SON68 nuclear glass in the Callovo–Oxfordian groundwater. Appl Geochem 100:268–278

    Article  Google Scholar 

  4. Yuan GX, Zhang LQ, Zeng QL (2018) Prediction of rock mass quality in target depth for Tamusu area of Alxa pre-selected region for geological disposal of high-level nuclear waste. J Eng Geol 26:1690–1700

    Google Scholar 

  5. Hu HY, Liu XD, Yang T, Wang GB, Huo L (2014) Experimental study and mechanism analysis on mechanical properties of clay rocks in Tamusu area. Geotech Investig Surv 42:9–13

    CAS  Google Scholar 

  6. Huang HE, Xu WD, Zhang WM, Zhang QL, Wang J (2017) Groundwater chemical and isotopes characteristics of the yingejing preselected area for high level radioactive waste disposal repository. Sci Tech Engrg 17:34–40

    Google Scholar 

  7. Grambow B (2008) Mobile fission and activation products in nuclear waste disposal. Contam Hydrol 102:180–186

    Article  CAS  Google Scholar 

  8. Koch SH, Pröhl G (2001) Considerations on the behaviour of long-lived radionuclides in the soil. Radiat Environ Biophys 40:93–104

    Article  Google Scholar 

  9. Jan YL, Tsai SC, Li YY (2014) Determination of sorption and diffusion parameters of Se(IV) on crushed granite. J Radioanal Nucl Chem 301:365–371

    Article  CAS  Google Scholar 

  10. Jussi I, Mikko V, Mervi S, Lalli J, Marja SK, Andrew M (2016) Sorption and diffusion of selenium oxyanions in granitic rock. Contam Hydrol 192:203–211

    Article  Google Scholar 

  11. Li XD, Eini P, Jussi I, Mervi S, Antero L, Stellan H, Andrew M, Marja SK (2018) Sorption of Se species on mineral surfaces, part I: batch sorption and multi-site modelling. Appl Geochem 95:147–157

    Article  CAS  Google Scholar 

  12. Videnská K, Palágyi Š, Štamberg K, Vodičková H, Havlová V (2013) Effect of grain size on the sorption and desorption of SeO42−and SeO32− in columns of crushed granite and fracture infill from granitic water under dynamic conditions. J Radioanal Nucl Chem 298:547–554

    Article  Google Scholar 

  13. He JG, Shi YL, Yang XY, Zhou WQ, Li Y, Liu CL (2018) Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite. Chemosphere 193:367–384

    Google Scholar 

  14. He HY, Liu J, Dong Y, Li HH, Zhao SW, Wang J, Jia ML, Zhang H, Liao JL, Yang JJ, Yang YY, Liu N (2019) Studied sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions. J Environ Radioact 203:210–219

    Article  CAS  Google Scholar 

  15. Tsai S, Ouyang S, Hsu CN (2001) Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isot 54:209–215

    Article  CAS  Google Scholar 

  16. César V, Javier G, Joan DP, María M (2011) Transport of Strontium Through a Ca-bentonite(Almería, Spain) and Comparison with MX-80 Na-bentonite: experimental and Modelling. Water Air Soil Pollut 218:471–478

    Article  Google Scholar 

  17. Zhao SW, Wu T, Li HH, Xu MH, Mao L, Guo YH, Liu YC, Jia ML (2019) Difusion of Re(VII) and Se (IV) in compacted GMZ bentonite in the presence of Bacillus spp. J Radioanal Nucl Chem 320:47–53

    Article  CAS  Google Scholar 

  18. Yang XY, Ge XK, He JG, Wang CL, Qi LY, Wang XY, Liu CL (2018) Effects of Mineral Compositions on Matrix Diffusion and Sorption of 75Se(IV) in Granite. Environ Sci Technol 52:1320–1329

    Article  CAS  Google Scholar 

  19. Wu T, Wang ZF, Tong YH, Wang YY, VanLoon LR (2018) Investigation of Re(VII) diffusion in bentonite by through-diffusion and modeling techniques. Appl Clay Sci 166:223–229

    Article  CAS  Google Scholar 

  20. NairobyA Tiziana M, Miguel GG, Ursula A, Manuel M (2011) Strontium migration in a crystalline medium: effects of the presence of bentonite colloids. J Contam Hydrol 122:76–85

    Article  Google Scholar 

  21. Shih YH, Lee IH, Ni CF, Tsai TL, Chen LC, Li CP, Tsai SC, Su TY (2018) Experimental and numerical investigations of 99TcO4 diffusion in compacted SPV 200 bentonite. J Radioanal Nucl Chem 316:1081–1089

    Article  CAS  Google Scholar 

  22. Wigger C, Van Loon LR (2017) Importance of interlayer equivalent pores for anion diffusion in clay-rich sedimentary rocks. Environ Sci Techno 51:1992–2006

    Article  Google Scholar 

  23. Wang XK, Montavon G, Grambow B (2003) A new experimental design to investigate the concentration dependent diffusion of Eu(III) in compacted bentonite. J Radioanal Nucl Chem 257:293–297

    Article  CAS  Google Scholar 

  24. Montavon G, Alhajji E, Grambow B (2006) Study of the Interaction of Ni2+and Cs+ on MX-80 Bentonite; effect of compaction using the capillary method. Environ Sci Tech 40:4672–4679

    Article  CAS  Google Scholar 

  25. Yu SM, Ren A, Wang XK (2005) Effect of pH on the apparent diffusion coefficient and sorption distribution coefficient of 152, 154 Eu(III) in compacted bentonite: a study of capillary method. J Radioanal Nucl Chem 27:104–108

    CAS  Google Scholar 

  26. Giffaut E, Grivé M, Blanc P, Vieillard P, Colàs E, Gailhanou H, Gaboreau S, Marty N, Made B, Duro L (2014) Andra thermodynamic database for performance assessment: thermoChimie. Appl Geochem 49:225–236

    Article  CAS  Google Scholar 

  27. Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42:1984–1989

    Article  CAS  Google Scholar 

  28. Aurelio G, Fernandez MA, Cuello GJ, Roman RG, Alliot I, Charlet I (2010) Structural study of selenium(IV) substitutions in calcite. Chem Geol 270:249–256

    Article  CAS  Google Scholar 

  29. Cowan CE, Zachara JM, Resch CT (1990) Solution ion effects on the surface exchange of selenite on calcite. Geochem Cosmochim Acta 54:2223–2234

    Article  CAS  Google Scholar 

  30. Heberling F, Vinograd VL, Polly R, Gale JD, Heck S, Rothe J, Bosbach D, Geckeis H, Winkler B (2014) A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite. Geochem Cosmochim Acta 134:16–38

    Article  CAS  Google Scholar 

  31. Wang ZF, Wu T, Ren P, Hua R, Wu H, Xu MH, Tong YH (2019) Through-difusion study of Se(IV) in γ-irradiated bentonite and bentonite–magnetite. J Radioanal Nucl Chem 332:801–808

    Article  Google Scholar 

  32. He JG, Ma B, Kang ML, Wang CL, NieZ Liu CL (2017) Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J Hazard Mater 324:564–572

    Article  CAS  Google Scholar 

  33. Wang ZF, Wang H, Li QM, Xu MH, Guo YH, Li JY, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Defense Science and Technology Foundation Project (JCKY2017401C005), Natural Science Foundation of China (201761002), Graduate Innovation Program (DHYC201912). To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingbiao Luo or Rong Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Huang, W., Duan, Z. et al. Investigation of Se(IV) diffusion in compacted Tamusu clay by capillary method. J Radioanal Nucl Chem 324, 903–911 (2020). https://doi.org/10.1007/s10967-020-07089-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07089-6

Keywords

Navigation