Skip to main content
Log in

Diffusion of Re(VII) and Se (IV) in compacted GMZ bentonite in the presence of Bacillus spp.

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of Bacillus spp. on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite was investigated by a through-diffusion method. Bacillus spp. had no significance effect on the effective diffusion coefficient (De) and the accessible porosity (εacc) of Re(VII), whereas a decrease of De and an increase of distribution coefficient (Kd) were observed for Se(IV). Moreover, Archie’s law and an exponential decay equation were employed to fit the De value of Re(VII) and Se(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Loon LR, Glaus MA, Muller W (2007) Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl Geochem 22:2536–2552

    Article  CAS  Google Scholar 

  2. Wu T, Wang ZF, Wang H, Zhang ZQ, Van Loon LR (2017) Salt effects on Re(VII) and Se(IV) diffusion in bentonite. Appl Clay Sci 141:104–110

    Article  CAS  Google Scholar 

  3. He JG, Ma B, Kang ML, Wang CL, Nie Z, Liu CL (2017) Migration of 75Se (IV) in crushed Beishan granite: effects of the iron content. J Hazard Mater 324:564–572

    Article  CAS  PubMed  Google Scholar 

  4. Van Loon LR, Leupin OX, Cloet V (2018) The diffusion of SO4 2− in Opalinus clay: measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repositories. Appl Geochem 95:19–24

    Article  CAS  Google Scholar 

  5. Wigger C, Kennell-Morrison L, Jensen M, Glaus M, Van Loon L (2018) A comparative anion diffusion study on different argillaceous, low permeability sedimentary rocks with various pore waters. Appl Geochem 92:157–165

    Article  CAS  Google Scholar 

  6. Xiong Q, Jivkov AP (2018) Anion diffusion in clay-rich sedimentary rocks—a pore network modelling. Appl Clay Sci 161:374–384

    Article  CAS  Google Scholar 

  7. Van Loon LR, Mibus J (2015) A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Appl Geochem 59:85–94

    Article  CAS  Google Scholar 

  8. Wigger C, Van Loon LR (2017) Importance of interlayer equivalent pores for anion diffusion in clay-rich sedimentary rocks. Environ Sci Technol 51:1998–2006

    Article  CAS  PubMed  Google Scholar 

  9. Idemitsu K, Kozaki H, Yuhara M, Arima T, Inagaki Y (2016) Diffusion behavior of selenite in purified bentonite. Prog Nucl Energy 92:279–285

    Article  CAS  Google Scholar 

  10. Zhang ZQ, Wu T, Wang ZF, Zhao SW, Li HH, Yang ZT, Che L, Zhu SX, Wu RF (2017) Diffusion of Re(VII) in gamma-irradiated bentonite: effect of compacted dry density and pH. J Radioanal Nucl Chem 314:395–401

    Article  CAS  Google Scholar 

  11. Mon EE, Hamamoto S, Kawamoto K, Komatsu T, Moldrup P (2016) Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay. Environ Earth Sci 75:562–571

    Article  Google Scholar 

  12. Wu T, Wang ZF, Li QM, Pan GX, Li JY, Van Loon LR (2016) Re(VII) diffusion in bentonite: effect of organic compounds, pH and temperature. Appl Clay Sci 127–128:10–16

    Article  CAS  Google Scholar 

  13. Wang ZF, Zhang JY, Chen J, Zhang ZQ, Zheng Q, Li JY, Wu T (2017) Diffusion behavior of Re(VII) in compacted illite-, hematite- and limonite-montmorillonite mixtures. J Radioanal Nucl Chem 311:655–661

    Article  CAS  Google Scholar 

  14. Um W, Chang H, Icenhower JP, Lukens WW, Jeffrey Serne R, Qafoku N, Kukkadapu RK, Westsik JH Jr (2012) Iron oxide waste form for stabilizing 99Tc. J Nucl Mater 429:201–209

    Article  CAS  Google Scholar 

  15. Huber FM, Totskiy Y, Marsac R, Schild D, Pidchenko I, Vitova T, Kalmykov S, Geckeis H, Schäfer T (2017) Tc interaction with crystalline rock from Äspö (Sweden): effect of in situ rock redox capacity. Appl Geochem 80:90–101

    Article  CAS  Google Scholar 

  16. Liu M, Chen XM, Zhang E, Wang C, Ruan C, Xu Y, Liu XL, Luo XG (2013) Study of microbial distribution in the arid desert Terrain, Beishan mountains area, Gansu. J Pure Appl Microbiol 7:3111–3119

    Google Scholar 

  17. Mueller B (2015) Experimental interactions between clay minerals and bacteria: a review. Pedosphere 25:799–810

    Article  Google Scholar 

  18. Dai QW, Zhao YL, Dong FQ, Wang B, Huang YB (2014) Interaction between bentonite and Bacillus litoralis strain SWU9. Appl Clay Sci 100:88–94

    Article  CAS  Google Scholar 

  19. Zhu Y, Li Y, Lu AH, Wang H, Yang XX, Wang CC, Cao WZ, Wang QH, Zhang XL, Pan DM, Pan XH (2011) Study of the interaction between bentonite and a strain of Bacillus mucilaginosus. Clay Clay Miner 59:538–545

    Article  CAS  Google Scholar 

  20. Barlow J, Gozzi K, Kelley CP, Geilich BM, Webster TJ, Chai Y, Sridhar S, van de Ven AL (2017) High throughput microencapsulation of B. subtilis in semi-permeable biodegradable polymersomes for selenium remediation. Appl Microbiol Biotechnol 101:455–464

    Article  CAS  PubMed  Google Scholar 

  21. Li XL, Ding CC, Liao JL, Du L, Sun Q, Yang JJ, Yang YY, Zhang D, Tang J, Liu N (2017) Microbial reduction of uranium (VI) by Bacillus sp dwc-2: a macroscopic and spectroscopic study. J Environ Sci 53:9–15

    Article  Google Scholar 

  22. Mashkani SG, Ghazvini PTM, Aligol DA (2009) Uptake of Re(VII) from aqueous solutions by Bacillus sp GT-83-23. Bioresour Technol 100:603–608

    Article  CAS  Google Scholar 

  23. Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S (2002) Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng 80:755–761

    Article  CAS  PubMed  Google Scholar 

  24. Kashiwa M, Ike M, Mihara H, Esaki N, Fujita M (2001) Removal of soluble selenium by a selenate-reducing bacterium Bacillus sp. SF-1. BioFactors 14:261–265

    Article  CAS  PubMed  Google Scholar 

  25. Motaghed M, Mousavi SM, Rastegar SO, Shojaosadati SA (2014) Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization. Bioresour Technol 171:401–409

    Article  CAS  PubMed  Google Scholar 

  26. Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237

    Article  CAS  PubMed  Google Scholar 

  27. Wu T, Wang H, Zheng Q, Zhao YL, Van Loon LR (2014) Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140

    Article  CAS  Google Scholar 

  28. Chen XH, Koumoutsi A, Scholz R et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  29. Wang ZF, Wang H, Li QM, Xu MH, Guo YH, Li JY, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7

    Article  CAS  Google Scholar 

  30. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 32:751–767

    Article  Google Scholar 

  31. Ikonen J, Voutilainen M, Söderlund M, Jokelainen L, Siitari-Kauppi M, Martin A (2016) Sorption and diffusion of selenium oxyanions in granitic rock. J Contam Hydrol 192:203–211

    Article  CAS  PubMed  Google Scholar 

  32. Tachi Y, Shibutani T, Sato H, Yui M (1998) Sorption and diffusion behavior of selenium in tuff. J Contam Hydrol 35:77–89

    Article  CAS  Google Scholar 

  33. Descostes M, Blin V, Bazer-Bachi F, Meier P, Grenut B, Radwan J, Schlegel ML, Buschaert S, Coelho D, Tevissen E (2008) Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute-Marne, France). Appl Geochem 23:655–677

    Article  CAS  Google Scholar 

  34. Peak D, Saha UK, Huang PM (2006) Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci Soc Am J 70:192–203

    Article  CAS  Google Scholar 

  35. Charlet L, Scheinost AC, Tournassat C, Greneche JM, Géhin A, Fernández-Martı´nez A, Coudert S, Tisserand D, Brendle J (2007) Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim Cosmochim Acta 71:5731–5749

    Article  CAS  Google Scholar 

  36. Zhu Y, Li Y, Lu AH, Wang HR, Yang XX, Wang CQ, Cao WZ, Wang QH, Zhang XL, Pan DM, Pan XH (2011) Study of the interaction between bentonite and a strain of bacillus mucilaginosus. Clay Clay Miner 59:538–545

    Article  CAS  Google Scholar 

  37. Liu WX, Xu XS, Wu XH, Yang QY, Luo YM, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  CAS  PubMed  Google Scholar 

  38. Iznaga-Escobar N (2001) Direct radiolabeling of monoclonal antibodies with rhenium-188 for radioimmunotherapy of solid tumors—a review of radiolabeling characteristics, quality control and in vitro stability studies. Appl Radiat Isotopes 54:399–406

    Article  CAS  Google Scholar 

  39. Ikram M, Faisal M (2010) Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se0) by Bacillus sp. Biotechnol Lett 32:1255–1259

    Article  CAS  PubMed  Google Scholar 

  40. Birgersson M, Karnland O (2009) Ion equilibrium between montmorillonite interlayer space and an external solution—consequences for diffusional transport. Geochim Cosmochim Acta 73:1908–1923

    Article  CAS  Google Scholar 

  41. Idiart A, Pękala M (2016) Models for diffusion in compacted bentonite. SKB TR-15-06, Swedish Nuclear Fuel and Waste Management Company

Download references

Acknowledgements

This work was financially supported by Zhejiang Provincial National Science Foundation of China (LY18B070006). Thanks are due to Tao Wu and Honghui Li for valuable discussion and to Yuchen Liu for assistance with revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wu or Honghui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wu, T., Li, H. et al. Diffusion of Re(VII) and Se (IV) in compacted GMZ bentonite in the presence of Bacillus spp.. J Radioanal Nucl Chem 320, 47–53 (2019). https://doi.org/10.1007/s10967-019-06455-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06455-3

Keywords

Navigation