Skip to main content
Log in

New developments in the production of theranostic pairs of radionuclides

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A brief historical background of the development of the theranostic approach in nuclear medicine is given and seven theranostic pairs of radionuclides, namely 44gSc/47Sc, 64Cu/67Cu, 83Sr/89Sr, 86Y/90Y, 124I/131I, 152Tb/161Tb and 152Tb/149Tb, are considered. The first six pairs consist of a positron and a β-emitter whereas the seventh pair consists of a positron and an α-particle emitter. The decay properties of all those radionuclides are briefly mentioned and their production methodologies are discussed. The positron emitters 64Cu, 86Y and 124I are commonly produced in sufficient quantities via the (p,n) reaction on the respective highly enriched target isotope. A clinical scale production of the positron emitter 44gSc has been achieved via the generator route as well as via the (p,n) reaction, but further development work is necessary. The positron emitters 83Sr and 152Tb are under development. Among the therapeutic radionuclides, 89Sr, 90Y and 131I are commercially available and 161Tb can also be produced in sufficient quantity at a nuclear reactor. Great efforts are presently underway to produce 47Sc and 67Cu via neutron, photon and charged particle induced reactions. The radionuclide 149Tb is unique because it is an α-particle emitter. The present method of production of 152Tb and 149Tb involves the use of the spallation process in combination with an on-line mass separator. The role of some emerging irradiation facilities in the production of special radionuclides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70/71:249–272

    Google Scholar 

  2. Zimmer AM, Kuzel TM, Spies WG, Duda RB, Webber DI, Kazikiewicz JM, Radosevich JA, LoCicero J, Robinson PG, Gilyon KA, Samuelson E, Spies SM, Rosen ST, Maguire RT (1992) Comparative pharmacokinetics of 111In and 90Y B72.3 in patients following single dose intravenous administration. Antib Immunoconjug Radiopharm 5:285–294

    Google Scholar 

  3. Mausner LF, Srivastava SC (1993) Selection of radionuclides for radioimmunotherapy. Med Phys 20:503–509

    CAS  PubMed  Google Scholar 

  4. Rösch F, Qaim SM, Stöcklin G (1993) Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p,n)- and natRb(3He,xn)-processes. Radiochim Acta 61:1–8

    Google Scholar 

  5. Rösch F, Qaim SM, Stöcklin G (1993) Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot 44:677–681

    Google Scholar 

  6. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE (1993) Measurement of pharmacokinetics of 86Y radiopharmaceuticals with PET and radiation dose calculation of analogous 90Y radiotherapeutics. J Nucl Med 34:2222–2226

    CAS  PubMed  Google Scholar 

  7. Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10:56(1–28)

  8. Lederer CM, Shirley VS (eds) (1978) Table of isotopes, vol 99, 7th edn. Wiley, New York, pp 1–1523

    Google Scholar 

  9. Eckerman KF, Endo A (2007) Radionuclide decay data and decay schemes. SNM MIRD Committee, Reston

    Google Scholar 

  10. Evaluated Nuclear Structure and Decay File (ENSDF), BNL, USA. www.nndc.bnl.gov/ensdf. Accessed on 6 June 2017

  11. Qaim SM, Bisinger T, Hilgers K, Nayak D, Coenen HH (2007) Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim Acta 95:67–73

    CAS  Google Scholar 

  12. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM (2008) PET imaging problems with the non-standard positron emitters 86Y and 124I. Q J Nucl Med Mol Imaging 52:159–165

    CAS  PubMed  Google Scholar 

  13. Lubberink M, Herzog H (2011) Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging 38(Suppl. 1):10

    PubMed Central  Google Scholar 

  14. Herzog H, Tellmann L, Qaim SM, Spellerberg S, Schmid A, Coenen HH (2002) PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I. Appl Radiat Isot 56:673–679

    CAS  PubMed  Google Scholar 

  15. Bunka M, Müller C, Vermeulen C, Haller S, Türler A, Schibli R, van der Meulen NP (2016) Imaging quality of 44Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot 110:129–133

    CAS  PubMed  Google Scholar 

  16. Qaim SM (2011) Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim Acta 99:611–625

    CAS  Google Scholar 

  17. Qaim SM, Spahn I (2018) Development of novel radionuclides for medical applications. J Label Compd Radiopharm 61:126–140

    CAS  Google Scholar 

  18. Ejnisman R, Goldman ID, Pascholati PR, daCruz MTF, Oliveira RM, Norman EB, Zlimen I, Wietfeldt FE, Larimer RM, Chan YD, Lesko KT, Garcia A (1996) Cross sections for 45Sc(p,2n)44Ti and related reactions. Phys Rev C 54:2047–2050

    CAS  Google Scholar 

  19. Daraban L, Rebeles RA, Hermanne A, Tárkányi F, Takács S (2009) Study of the excitation functions for 43K, 43Sc, 44Sc, 44mSc and 44Ti by proton irradiation on 45Sc up to 37 MeV. Nucl Instrum Methods B 267:755–759

    CAS  Google Scholar 

  20. Seidl E, Lieser KH (1973) 113Sn/113mIn, 68Ge/68Ga and 44Ti/44Sc radionuclide generators. Radiochim Acta 19:196–198

    CAS  Google Scholar 

  21. Filosofov DV, Loktionova NS, Rösch F (2010) A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 98:149–156

    CAS  Google Scholar 

  22. Pruszynski M, Loktionova NS, Filosofov DV, Rösch F (2010) Post-elution processing of 44Ti/44Sc generator-derived 44Sc for clinical application. Appl Radiat Isot 68:1636–1641

    CAS  PubMed  Google Scholar 

  23. Radchenko V, Engle JW, Medvedev DG, Maassen JM, Naranjo CM, Unc GA, Meyer CAL, Mastren T, Brugh M, Mausner L, Cutler CS, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2017) Proton-induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development. Nucl Med Biol 50:25–32

    CAS  PubMed  Google Scholar 

  24. Radchenko V, Meyer CAL, Engle JW, Naranjo CM, Unc GA, Mastren T, Brugh M, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2016) Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. J Chromatogr A 1477:39–46

    CAS  PubMed  Google Scholar 

  25. de Waal TJ, Peisach M, Pretorius R (1971) Activation cross sections for proton-induced reactions on calcium isotopes up to 5.6 MeV. J Inorg Nucl Chem 33:2783–2789

    Google Scholar 

  26. Levkovskii N (1991) Middle mass nuclides (A = 40–100) activation cross sections by medium energy (E = 10–50 MeV) protons and alpha particles (experiment and systematics). Inter-Vesti, Moscow, p 215

    Google Scholar 

  27. Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U, Bilewicz A (2013) Cyclotron production of 44Sc for clinical application. Radiochim Acta 101:333–338

    CAS  Google Scholar 

  28. Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, Scampoli P, Türler A, van der Meulen N (2017) Measurement of 43Sc and 44Sc production cross section with an 18 MeV medical PET cyclotron. Appl Radiat Isot 129:96–102

    CAS  PubMed  Google Scholar 

  29. Al-Abyad M, Mohamed GY, Hassan HE, Takács S, Ditrói F (2018) Experimental measurements and theoretical calculations for proton, deuteron and alpha-particle induced nuclear reactions on calcium: special relevance to the production of 43Sc, 44Sc. J Radioanal Nucl Chem 316:119–128

    CAS  Google Scholar 

  30. Duchemin C, Guertin A, Haddad F, Michel N, Metivier V (2015) Production of 44mSc and 44gSc with deuterons on 44Ca: cross section measurements and production yield calculations. Phys Med Biol 60:6847–6864

    CAS  PubMed  Google Scholar 

  31. Riley C, Linder B, Ueno K (1964) Cross sections and isomer ratios for 41K(α,n)44m,44gSc reaction. Phys Rev B 135:1340–1344

    CAS  Google Scholar 

  32. Scott AF, Morton AJ, Tingwell CJW, Tims SG, Hansper VY, Sargood DG (1991) Cross sections and thermonuclear reaction rates for 41K(α,n) 44Sc and 41K(α,p)44Ca. Nucl Phys A 523:373–385

    Google Scholar 

  33. Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113

    CAS  PubMed  Google Scholar 

  34. Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ (2012) Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot 70:1526–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ (2015) Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin. Appl Radiat Isot 95:23–29

    CAS  PubMed  Google Scholar 

  36. Rangacharyulu C, Fukuda M, Kanda H, Nishizaki S, Takahashi N (2017) Assessment of 43Sc, 44Sc isotope production in proton- and alpha-induced reactions. J Radioanal Nucl Chem 314:1967–1971

    CAS  Google Scholar 

  37. Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang MR (2016) Production of 43Sc and 47Sc from a powdery calcium oxide target via the nat/44Ca(alpha,x)-channel. Appl Radiat Isot 116:8–12

    CAS  PubMed  Google Scholar 

  38. Szkliniarz K, Sitarz M, Walczak R, Jastrzebski J, Bilewicz A, Choinski J, Jakubowski A, Majkowska A, Stolarz A, Trzcinska A, Zipper W (2016) Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 118:182–189

    CAS  PubMed  Google Scholar 

  39. Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S (2015) Cyclotron production of high purity 44mSc, 44Sc with deuterons from (CaCO3)44Ca targets. Nucl Med Biol 42:524–529

    CAS  PubMed  Google Scholar 

  40. van der Meulen NP, Bunka M, Domnanich KA, Müller C, Haller S, Vermeulen C, Türler A, Schibli R (2015) Cyclotron production of 44Sc: from bench to bedside. Nucl Med Biol 42:745–751

    PubMed  Google Scholar 

  41. Huclier-Markai S, Alliot C, Rousseau J, Chouin N, Fani M, Bouziotis P, MainaT Cutler CS, Barbet J (2014) Promising prospects of 44mSc/44Sc as an in vivo generator: biological evaluation and PET images. Nucl Med Biol 41:631

    Google Scholar 

  42. Qaim SM, Spahn I, Scholten B, Neumaier B (2016) Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim Acta 104:601–626

    CAS  Google Scholar 

  43. Hoehr C, Oehlke E, Bernárd F, Lee CJ, Hou X, Badesso B, Ferguson S, Miao Q, Yang H, Buckley K, Hanemaayer V, Zeisler S, Ruth T, Celler A, Schaffer P (2014) 44gSc production using a water target on a 13 MeV cyclotron. Nucl Med Biol 41:401–406

    CAS  PubMed  Google Scholar 

  44. Das MK, Sarkar BR, Ramamoorthy N (1990) Yields of some radioisotopes formed in alpha-particle induced reactions on titanium and recovery of scandium radionuclides. Radiochim Acta 50:135–139

    CAS  Google Scholar 

  45. Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier-free 47Sc from titanium targets. J Radioanal Nucl Chem Articles 157:335–345

    CAS  Google Scholar 

  46. Das NR, Banerjee S (1995) Lahiri S (1995) Sequential separation of carrier-free 47Sc, 48V and 48,49,51Cr from α-particle activated titanium with TOA. Radiochim Acta 69:61–64

    CAS  Google Scholar 

  47. Lahiri S, Banerjee S, Das NR (1996) LLX separation of carrier-free 47Sc, 48V and 48,49,51Cr produced in α-particle activated titanium with HDEHP. Appl Radiat Isot 47:1–6

    CAS  Google Scholar 

  48. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294

    CAS  PubMed  Google Scholar 

  49. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added 47Sc for radioimmunotherapy. Appl Radiat Isot 49:1541–1549

    CAS  PubMed  Google Scholar 

  50. Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem 283:389–393

    CAS  Google Scholar 

  51. Bartos B, Majkowska A, Kasperek A, Krajewski S, Bilewicz A (2012) New separation method of no-carrier-added 47Sc from titanium targets. Radiochim Acta 100:457–461

    CAS  Google Scholar 

  52. Deilami-Nezhad L, Moghaddam-Banaem L, Sadeghi M, Asgari M (2016) Production and purification of 47Sc: a potential radioisotope for cancer theranostics. Appl Radiat Isot 118:124–128

    CAS  PubMed  Google Scholar 

  53. Yagi M, Kondo K (1977) Preparation of carrier-free 47Sc by 48Ti(γ,p) reaction. Int J Appl Radiat Isot 28:463–468

    CAS  Google Scholar 

  54. Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, Gromov RG, Greene J (2018) Electron linear accelerator production and purification of 47Sc from titanium dioxide targets. Appl Radiat Isot 131:77–82

    CAS  PubMed  Google Scholar 

  55. Hara T, Freed BR (1973) Preparation of carrier-free 47Sc by chemical separation from 47Ca and its distribution in tumor bearing mice. Int J Appl Radiat Isot 24:373–376

    CAS  PubMed  Google Scholar 

  56. Bilewicz A, Walczak R, Majkowska A, Misiak R, Choinski J, Sitarz M, Stolarz A, Jastrzebski J (2016) Cyclotron production of theranostic pair 43Sc/47Sc on calcium targets. Eur J Nucl Med Mol Imaging (Suppl) 43:S135–S136

    Google Scholar 

  57. Chakravarty R, Chakraborty S, Ram R, Dash A (2017) An electroamalgamation approach to separate 47Sc from neutron-activated 46Ca target for use in cancer theranostics. Sep Sci Technol 52:2363–2371

    CAS  Google Scholar 

  58. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, van der Meulen N, Türler A, Schibli R (2014) Promising prospects for 44Sc/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664

    PubMed  Google Scholar 

  59. Gladney ES, Goode WE (1979) Preparation of carrier-free 47Sc by the 47Ti(n,p) reaction with epithermal neutrons. Int J Appl Radiat Isot 30:65

    CAS  Google Scholar 

  60. Mausner LF, Kolsky KL, Mease RC, Chinol M, Meinken GE, Straub RF, Pietrelli RF, Steplewski Z, Srivastava SC (1993) Production and evaluation of 47Sc for radioimmunotherapy. J Label Compd Radiopharm 32:388–390

    Google Scholar 

  61. Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim Acta 99:635–640

    CAS  Google Scholar 

  62. Calamand A (1974) Cross sections for fission neutron spectrum averaged induced reactions. Technical Report No.156, IAEA, Vienna, Austria, p.273

  63. Mamtimin M, Harmon F, Starovoitova VN (2015) 47Sc production from titanium targets using electron linacs. Appl Radiat Isot 102:1–4

    CAS  PubMed  Google Scholar 

  64. Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem 305:127–132

    CAS  Google Scholar 

  65. Rane S, Harris JT, Starovoitova VN (2015) 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot 97:188–192

    CAS  PubMed  Google Scholar 

  66. Misiak R, Walczak R, Was B, Bartyzel M, Mietelski JW, Bilewicz A (2017) 47Sc production development by cyclotron irradiation of 48Ca. J Radioanal Nucl Chem 313:429–434

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980

    CAS  PubMed  Google Scholar 

  68. Ma D, Lu F, Overstreet T, Milenic DE, Brechbiel MW (2002) Novel chelating agents for potential applications of copper. Nucl Med Biol 29:91–105

    CAS  PubMed  Google Scholar 

  69. Uddin MS, Rumman-uz-Zaman M, Hossain SM, Qaim SM (2014) Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of 64Cu and 67Cu via the (n,p) reaction at a TRIGA Mark-II reactor: feasibility of simultaneous production of the theragnostic pair 64Cu/67Cu. Radiochim Acta 102:473–480

    CAS  Google Scholar 

  70. Bokhari TH, Mushtaq A, Khan IU (2010) Production of low and high specific activity 64Cu in a reactor. J Radioanal Nucl Chem 284:265–271

    CAS  Google Scholar 

  71. Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Ünlu K (2015) Reactor production of 64Cu and 67Cu using enriched zinc target material. J Radioanal Nucl Chem 305:61–71

    CAS  Google Scholar 

  72. Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim Acta 92:183–186

    CAS  Google Scholar 

  73. Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K, Konno C, Nagai Y (2015) Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J Radioanal Nucl Chem 303:1205–1209

    CAS  Google Scholar 

  74. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2009) Charged particle induced reaction cross section data for production of the emerging medically important positron emitter 64Cu: a comprehensive evaluation. Radiochim Acta 97:669–686

    CAS  Google Scholar 

  75. Uddin MS, Chakraborty AK, Spellerberg S, Shariff MA, Das S, Rashid MA, Spahn I, Qaim SM (2016) Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim Acta 104:305–314

    CAS  Google Scholar 

  76. Szelecsényi F, Kovács Z, Nagatsu K, Zhang MR, Suzuki K (2014) Excitation function of (p,α) nuclear reaction on enriched 67Zn: possibility of production of 64Cu at low energy cyclotron. Radiochim Acta 102:465–472

    Google Scholar 

  77. Szelecsényi F, Steyn GF, Kovács Z (2016) On the formation of non-radioactive copper during the production of 64Cu via proton and deuteron-induced nuclear reactions on enriched 64Ni targets. J Radioanal Nucl Chem 307:1841–1846

    Google Scholar 

  78. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Google Scholar 

  79. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43

    CAS  PubMed  Google Scholar 

  80. Szajek LP, Meyer W, Plascjak P, Eckelman WC (2005) Semi-remote production of [64Cu]CuCl2 and preparation of high specific activity [64Cu]Cu-ATSM for PET studies. Radiochim Acta 93:239–244

    CAS  Google Scholar 

  81. Avila-Rodriguez MA, Nye JA, Nickles RJ (2007) Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. Appl Radiat Isot 65:1115–1120

    CAS  PubMed  Google Scholar 

  82. Sadeghi M, Amiri M, Roshanfarzad P, Avila M, Tenreiro C (2008) Radiochemical studies relevant to the no-carrier-added production of 61,64Cu at a cyclotron. Radiochim Acta 96:399–402

    CAS  Google Scholar 

  83. Alliot C, Michel N, Bonraisin AC, Bosse V, Laize J, Bourdeau C, Mokili BM, Haddad F (2011) One step purification process for no-carrier-added 64Cu produced using enriched nickel target. Radiochim Acta 99:627–630

    CAS  Google Scholar 

  84. Watanabe S, Iida Y, Suzui N, Katabuchi T, Ishii S, Kawachi N, Hanaoka H, Watanabe S, Matsuhashi S, Endo K, Ishioka N (2009) Production of no-carrier-added 64Cu and applications to molecular imaging by PET and PETIS as a biomedical tracer. J Radioanal Nucl Chem 280:199–205

    CAS  Google Scholar 

  85. Rajec P, Csiba V, Leporis M, Stefecka M, Pataky EL, Reich M, Ometakova J (2010) Preparation and characterization of nickel targets for cyclotron production of 64Cu. J Radioanal Nucl Chem 286:665–670

    CAS  Google Scholar 

  86. Le VS, Howse J, Zaw M, Pellegrini P, Katsifis A, Greguric I, Weiner R (2009) Alternative method for 64Cu radioisotope production. Appl Radiat Isot 67:1324–1331

    CAS  PubMed  Google Scholar 

  87. Thisgaard H, Jensen M, Elema DR (2011) Medium to large scale radioisotope production for targeted radiotherapy using a small PET cyclotron. Appl Radiat Isot 69:1–7

    CAS  PubMed  Google Scholar 

  88. Watanabe S, Watanabe S, Liang JX, Hanaoka H, Endo K, Ishioka NS (2009) Chelating ion-exchange methods for the preparation of no-carrier-added 64Cu. Nucl Med Biol 36:587–590

    CAS  PubMed  Google Scholar 

  89. Dirks C, Scholten B, Happel S, Zulauf A, Bombard A, Jungclas H (2010) Characterisation of a Cu selective resin and its application to the production of 64Cu. J Radioanal Nucl Chem 286:671–674

    CAS  Google Scholar 

  90. Toyota T, Hanafusa T, Oda T, Koumura I, Sasaki T, Matsuura E, Kumon H, Yano T, Ono T (2013) A purification system for 64Cu produced by a biomedical cyclotron for antibody PET imaging. J Radioanal Nucl Chem 298:295–300

    CAS  PubMed  Google Scholar 

  91. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR (2016) Efficient preparation of high-quality 64Cu for routine use. Nucl Med Biol 43:685–691

    CAS  PubMed  Google Scholar 

  92. Burke P, Golovko O, Clark JC, Aigbirhio FI (2010) An automated method for regular productions of 64Cu for PET radiopharmaceuticals. Inorg Chim Acta 363:1316–1319

    CAS  Google Scholar 

  93. Rebeles RA, Van den Winkel P, Hermanne A, De Vis L, Waegeneer R (2010) PC-controlled radiochemistry system for preparation of no-carrier-added 64Cu. J Radioanal Nucl Chem 286:655–659

    Google Scholar 

  94. Thieme S, Walther M, Pietzsch HJ, Henniger J, Preusche S, Mäding P, Steinbach J (2012) Module-assisted preparation of 64Cu with high specific activity. Appl Radiat Isot 70:602–608

    CAS  PubMed  Google Scholar 

  95. Kume M, Carey PC, Gaehle G, Madrid E, Voller T, Margenau W, Welch MJ, Lapi SE (2012) Module-assisted preparation of 64Cu with high specific activity. Appl Radiat Isot 70:1803–1808

    CAS  PubMed  Google Scholar 

  96. Elomaa VV, Jurttila J, Rajander J, Solin O (2014) Automation of 64Cu production at Turku PET Centre. Appl Radiat Isot 89:74–78

    CAS  PubMed  Google Scholar 

  97. Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017) Production of 64Cu and 68Ga with a medical cyclotron using liquid targets. Mod Phys Letters 32:1740013

    CAS  Google Scholar 

  98. Abbas K, Kozempel J, Bonardi M, Groppi F, Alfarano A, Holzwarth U, Simonelli F, Hofmann H, Horstmann W, Menapace E, Leseticky L, Gibson N (2006) Cyclotron production of 64Cu by deuteron irradiation of 64Zn. Appl Radiat Isot 64:1001–1005

    CAS  PubMed  Google Scholar 

  99. Kozempel J, Abbas K, Simonelli F, Zampese M, Holzwarth U, Gibson N, Leseticky L (2007) A novel method for n.c.a. 64Cu production by the 64Zn(d,2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta 95:75–80

    CAS  Google Scholar 

  100. Smith SV, Waters DJ, Di Bartolo N (1996) Separation of 64Cu from 67Ga waste products using anion exchange and low acid aqueous/organic mixtures. Radiochim Acta 75:65–68

    CAS  Google Scholar 

  101. Smith SV, Waters DJ, Di Bartolo NM, Hockings R (2003) Novel separation process for ultra pure and high specific activity 64Cu. J Inorg Biochem 96:232

    Google Scholar 

  102. Szelecésnyi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, van der Walt TN, Suzuki K, Mukai K (2005) Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p, x)64Cu nuclear processes up to 100 MeV: production of 64Cu. Nucl Instrum Methods B 240:625–637

    Google Scholar 

  103. Kim JH, Park H, Chun KS (2010) Effective separation method of 64Cu from 67Ga waste product with a solvent extraction and chromatography. Appl Radiat Isot 68:1623–1626

    CAS  PubMed  Google Scholar 

  104. Smith NA, Bowers DL, Ehst DA (2012) The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377–2383

    CAS  PubMed  Google Scholar 

  105. Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100:635–651

    CAS  Google Scholar 

  106. Qaim SM (2015) Nuclear data for medical radionuclides. J Radioanal Nucl Chem 305:233–245

    CAS  Google Scholar 

  107. Qaim SM (2017) Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol 44:31–49

    CAS  PubMed  Google Scholar 

  108. Sato N, Tsukada K, Watanabe S, Ishioka NS, Kawabata M, Saeki H, Nagai Y, Kin T, Minato F, Iwamoto N, Iwamoto O (2014) First measurement of the radionuclide purity of the therapeutic isotope 67Cu produced by 68Zn(n,x) reaction using natC(d,n) neutrons. J Phys Soc Jpn 83:073201

    Google Scholar 

  109. Sugo Y, Hashimoto K, Kawabata M, Saeki H, Sato S, Tsukada K, Nagai Y (2017) Application of 67Cu produced by 68Zn(n,n’p+d)67Cu to biodistribution study in tumor-bearing mice. J Phys Soc Jpn 86:023201

    Google Scholar 

  110. Marceau N, Kruck TPA, McConnell DB, Aspin N (1970) Production of 67Cu from natural zinc using a linear accelerator. Int J Appl Radiat Isot 21:667–669

    CAS  PubMed  Google Scholar 

  111. Yagi M, Kondo K (1978) Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction. Int J Appl Radiat Isot 29:757–759

    CAS  Google Scholar 

  112. Danon Y, Block RC, Testa R, Moore H (2008) Medical isotope production using a 60 MeV linear electron accelerator. Trans Am Nucl Soc 98:894–895

    Google Scholar 

  113. Ayzatsky NI, Dikiy NP, Dovbnya AN, Lyashko YV, Nikiforov VI, Tensihev AE, Torgovkin AV, Uvarov VL, Shramenko BI, Ehst D (2008) Features of 67Cu photonuclear production. Probl At Sci Technol 49:174–178

    Google Scholar 

  114. Aizatskyi NI, Dikiy NP, Dovbnya AN, Dolzhek MA, Lyashko YV, Medvedeva EP, Medvedev DV (2014) Photonuclear method of production of 67Cu. Probl At Sci Technol 49:182–185

    Google Scholar 

  115. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44

    CAS  PubMed  Google Scholar 

  116. Qaim SM, Tárkányi F Capote R (eds) (2011) Nuclear data for the production of therapeutic radionuclides. IAEA Tech. Reports Series No. 473, Vienna, Austria, pp 1–358

  117. Pupillo G, Sounalet T, Michel N, Mou L, Esposito J, Haddad F (2018) New production cross sections for the theranostic radionuclide 67Cu. Nucl Instrum Methods B 415:41–47

    CAS  Google Scholar 

  118. Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta 100:419–423

    CAS  Google Scholar 

  119. Skakun Y, Qaim SM (2004) Excitation function of the 64Ni(α,p)67Cu reaction for production of 67Cu. Appl Radiat Isot 60:33–39

    CAS  Google Scholar 

  120. Uddin MS, Kim K, Nadeem M, Sudár S, Kim G (2018) Measurements of excitation functions of alpha-particle induced reactions on natNi: possibility of production of the medical isotopes 61Cu and 67Cu. Radiochim Acta 106:87–93

    CAS  Google Scholar 

  121. Jamriska DJ Sr, Taylor WA, Ott MA, Heaton RC, Phillips DR, Fowler MM (1995) Activation rates and chemical recovery of 67Cu produced with low-energy proton irradiation of enriched 70Zn targets. J Radioanal Nucl Chem 195:263–270

    CAS  Google Scholar 

  122. Hilgers K, Stoll T, Skakun Y, Coenen HH, Qaim SM (2003) Cross section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p, αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl Radiat Isot 59:343–351

    CAS  PubMed  Google Scholar 

  123. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Zhang MR (2018) Small-scale production of 67Cu for a preclinical study via the 64Ni(α,p)67Cu channel. Nucl Med Biol 59:56–60

    CAS  PubMed  Google Scholar 

  124. Dasgupta AK, Mausner LF, Srivastava SC (1991) A New separation procedure for 67Cu from proton irradiated Zn. Appl Radiat Isot 42:371–376

    CAS  Google Scholar 

  125. Schwarzbach R, Zimmermann K, Bläuenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl Radiat Isot 46:329–336

    CAS  PubMed  Google Scholar 

  126. Stoll T, Kastleiner S, Shubin YN, Coenen HH, Qaim SM (2002) Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with special reference to the production of 67Cu. Radiochim Acta 90:309–313

    CAS  Google Scholar 

  127. Katabuchi T, Watanabe S, Ishioka NS, Iida Y, Hanaoka H, Endo K, Matsuhashi S (2008) Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J Radioanal Nucl Chem 277:467–470

    CAS  Google Scholar 

  128. Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge CJ, Korach EM, Srivastava SC (2012) Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl Radiat Isot 70:423–429

    CAS  PubMed  Google Scholar 

  129. Mastren T, Pen A, Loveless S, Marquez BV, Bollinger E, Marois B, Hubley N, Brown K, Morrissey DJ, Peaslee GF, Lapi SE (2015) Harvesting 67Cu from the collection of a secondary beam cocktail at the national superconducting cyclotron laboratory. Anal Chem 87:10323–10329

    CAS  PubMed  Google Scholar 

  130. Horiguchi T, Noma H, Yoshizawa Y, Takemi H, Hasai H, Kiso Y (1980) Excitation functions of proton-induced nuclear reactions on 85Rb. Int J Appl Radiat Isot 31:141–151

    CAS  Google Scholar 

  131. Kastleiner S, Qaim SM, Nortier FM, Blessing G, van der Walt TN, Coenen HH (2002) Excitation functions of 85Rb(p,xn) 85m,g,83,82,81Sr reactions up to 100 MeV: integral tests of cross section data, comparison of production routes of 83Sr and thick target yield of 82Sr. Appl Radiat Isot 56:685–695

    CAS  PubMed  Google Scholar 

  132. Tárkányi F, Qaim SM, Stöcklin G (1988) Excitation functions of 3He-particle induced nuclear reactions on enriched 82Kr and 83Kr. Radiochim Acta 43:185–189

    Google Scholar 

  133. Blessing G, Tárkányi F, Qaim SM (1997) Production of 82mRb via the 82Kr(p,n)-process on highly enriched 82Kr: a remotely controlled compact system for irradiation, safe handling and recovery of the target gas and isolation of the radioactive product. Appl Radiat Isot 48:37–43

    CAS  Google Scholar 

  134. Karelin YA, Efimov VN, Filimonov VT, Kuznetsov RA, Revyakin YL, Andreev OI, Zhemkov IY, Bukh VG, Lebedev VM, Spiridonov YN (2000) Radionuclide production using a fast flux reactor. Appl Radiat Isot 53:825–827

    CAS  PubMed  Google Scholar 

  135. Zhuikov BL (2014) Production of medical radionuclides in Russia: status and future-a review. Appl Radiat Isot 84:48–56

    CAS  PubMed  Google Scholar 

  136. Zaneb H, Hussain M, Amjed N, Qaim SM (2015) Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y. Appl Radiat Isot 104:232–241

    CAS  PubMed  Google Scholar 

  137. Baimukhanova A, Radchenko V, Kozempel J, Marinova A, Brown V, Karandashev V, Karaivanov D, Schaffer P, Filosofov D (2018) Utilization of (p,4n) reaction for 86Zr- production with medium energy protons and development of a 86Zr → 86Y radionuclide generator. J Radioanal Nucl Chem 316:191–199

    CAS  Google Scholar 

  138. Lambrecht RM, Sajjad M, Qureshi MA, Alyanbawi SJ (1988) Production of 124I. J Radioanal Nucl Chem Articles 127:143–150

    CAS  Google Scholar 

  139. Braghirolli AMS, Waissmann W, da Silva JB, dos Santos GR (2014) Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 90:138–148

    CAS  PubMed  Google Scholar 

  140. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2010) Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124. Appl Radiat Isot 68:1760–1773

    CAS  PubMed  Google Scholar 

  141. Aslam MN, Sudár S, Hussain M, Malik AA, Qaim SM (2011) Evaluation of excitation functions of 3He- and alpha-particle induced reactions on antimony isotopes with special reference to the production of iodine-124. Appl Radiat Isot 69:94–110

    CAS  PubMed  Google Scholar 

  142. Scholten B, Kovács Z, Tárkányi F, Qaim SM (1995) Excitation functions of 124Te(p,xn)123,124I reactions from 6 MeV to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl Radiat Isot 46:255–259

    CAS  Google Scholar 

  143. Hohn A, Nortier FM, Scholten B, van der Walt TN, Coenen HH, Qaim SM (2001) Excitation functions of 125Te(p,xn)-reactions from their respective thresholds up to 100 MeV with special reference to the production of 124I. Appl Radiat Isot 55:149–156

    CAS  PubMed  Google Scholar 

  144. Michael H, Rosezin H, Apelt H, Blessing G, Knieper J, Qaim SM (1981) Some technical improvements in the production of 123I via the 124Te(p,2n)123I reaction at a compact cyclotron. Int J Appl Radiat Isot 32:581–587

    CAS  Google Scholar 

  145. Sheh Y, Koziorowski J, Balatoni J, Lom C, Dahl JR, Finn RD (2000) Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target. Radiochim Acta 88:169–173

    CAS  Google Scholar 

  146. Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S, Scholten B, Coenen HH (2003) Some optimisation studies relevant to the production of high-purity 124I and 120gI at a small-sized cyclotron. Appl Radiat Isot 58:69–78

    CAS  PubMed  Google Scholar 

  147. Glaser M, Mackay DB, Ranicar ASO, Waters SL, Brady F, Luthra SK (2004) Improved targetry and production of iodine-124 for PET studies. Radiochim Acta 92:951–956

    CAS  Google Scholar 

  148. Sajjad M, Bars E, Nabi HA (2006) Optimisation of 124I production via 124Te(p, n)124I reaction. Appl Radiat Isot 64:965–970

    CAS  PubMed  Google Scholar 

  149. Nye JA, Avila-Rodriguez MA, Nickles RJ (2006) Production of [124I]iodine on an 11 MeV cyclotron. Radiochim Acta 94:213–216

    CAS  Google Scholar 

  150. Nagatsu K, Fukada M, Minegishi K, Suzuki H, Fukumura T, Yamazaki H, Suzuki K (2011) Fully automated production of iodine-124 using a vertical beam. Appl Radiat Isot 69:146–157

    CAS  PubMed  Google Scholar 

  151. Mandal S, Mandal A, Lahiri S (2012) Separation of nca 123,124,125,126I from alpha particle induced reactions on the natural antimony trioxide target. J Radioanal Nucl Chem 292:579–584

    CAS  Google Scholar 

  152. Hassan KF, Spellerberg S, Scholten B, Saleh ZA, Qaim SM (2014) Development of an ion-exchange method for separation of radioiodine from tellurium and antimony and its application to the production of 124I via the 121Sb(α, n)-process. J Radioanal Nucl Chem 302:689–694

    CAS  Google Scholar 

  153. Uddin MS, Qaim SM, Hermanne A, Spahn I, Spellerberg S, Scholten B, Hossain SM, Coenen HH (2015) Ion-exchange separation of radioiodine and its application to production of 124I by alpha particle induced reactions on antimony. Radiochim Acta 103:587–593

    CAS  Google Scholar 

  154. Manual for Reactor Produced Radionuclides (2003) IAEA-TECDOC-1340, Vienna, pp 1–251

  155. Allen BJ, Blagojevic N (1996) Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: the potential role of terbium-149. Nucl Med Commun 17:40–47

    CAS  PubMed  Google Scholar 

  156. Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP (2001) Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot 54:53–58

    CAS  PubMed  Google Scholar 

  157. Sarkar S, Allen BJ, Iman S, Gouzee G, Leigh J, Meriaty H (1997) Production and separation of terbium-149,152 for targeted cancer therapy. In: Second international conference on isotopes, Sydney, p 104

  158. Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt TN, Türler A, Schibli R (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53:1951–1959

    PubMed  Google Scholar 

  159. Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der Meulen NP (2016) Preclinical in vivo application of 152Tb-DOTANOC: a radiolanthanide for PET imaging. Eur J Nucl Med Mol Imaging Res 6:35–45

    Google Scholar 

  160. Baum RP, Singh A, Benesova M, Vermeulen C, Gnesin S, Köster U, Johnston K, Müller D, Senftleben S, Kulkarni HR, Türler A, Schibli R, Prior JO, van der Meulen NP, Müller C (2017) Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with Tb-152-DOTATOC. Dalton Trans 46:14638–14646

    CAS  PubMed  Google Scholar 

  161. Vermeulen C, Steyn GF, Szelecsényi F, Kovács Z, Suzuki K, Nagatsu K, Fukumura T, Hohn A, van der Walt TN (2012) Cross sections of proton-induced reactions on natGd with special emphasis on the production possibilities of 152Tb and 155Tb. Nucl Instrum Methods B 275:24–32

    CAS  Google Scholar 

  162. Steyn GF, Vermeulen C, Szelecsenyi F, Kovacs Z, Hohn A, van der Meulen NP, Schibli R, van der Walt TN (2014) Cross sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides. Nucl Instrum Methods B 319:128–140

    CAS  Google Scholar 

  163. Tárkányi F, Takács S, Ditrói F, Csikai J, Hermanne A, Ignatyuk AV (2014) Activation cross-sections of deuteron induced reactions on natGd up to 50 MeV. Appl Radiat Isot 83:25–35

    PubMed  Google Scholar 

  164. Tárkányi F, Ditrói F, Takács S, Hermanne A, Ignatyuk AV (2015) Extension of the energy range of the experimental activation cross sections data of longer lived products of proton induced nuclear reactions on dysprosium up to 65 MeV. Appl Radiat Isot 98:87–95

    PubMed  Google Scholar 

  165. Güray RT, Özkan N, Yalcin C, Rauscher T, Gyürky G, Farkas J, Fülöp Z, Halász Z, Somorjai E (2015) Measurements of 152Gd(p,γ)153Tb and 152Gd(p,n)152Tb reaction cross sections for the astrophysical γ process. Phys Rev C 91:055809

    Google Scholar 

  166. Kovács Z, Szelecsényi F, Brezovcsik K (2016) Preparation of thin gadolinium samples via electrodeposition for excitation function studies. J Radioanal Nucl Chem 307:1861–1864

    Google Scholar 

  167. Brezovcsik K, Kovács Z, Szelecsényi F (2018) Separation of radioactive terbium from massive Gd targets for medical use. J Radioanal Nucl Chem 316:775–780

    CAS  Google Scholar 

  168. Kazakov AG, Aliev RA, Bodrov AY, Priselkova AB, Kalmykov SN (2018) Separation of radioisotopes of terbium from a europium target irradiated with 27 MeV α-particles. Radiochim Acta 106:135–140

    CAS  Google Scholar 

  169. Lahiri S, Nayak D, Das SK, Ramaswami A, Manohor SB, Das NR (1999) Separation of carrier free 152,153Dy and 151-153Tb from 16O irradiated CeO2 by liquid-liquid extraction. J Radioanal Nucl Chem 241:201–206

    CAS  Google Scholar 

  170. Nayak D, Lahiri S, Ramaswami A, Manohar SB, Das NR (1999) Separation of carrier free 151,152Tb produced in 16O irradiated lanthanum oxide matrix. Appl Radiat Isot 58:631–636

    Google Scholar 

  171. Beyer GJ, Comor JJ, Dakovic M, Soloviev D, Tamburella C, Hagebo E, Allen B, Dmitriev SN, Zaitseva NG, Starodub GY, Molokanova LG, Vranjes S, Miederer M (2002) Production routes of the alpha emitting 149Tb for medical application. Radiochim Acta 90:247–252

    CAS  Google Scholar 

  172. Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Künzi G, Hartley O, Senekowitsch-Schmidtke R, Soloviev D, Buchegger F (2004) Targeted alpha therapy in vivo: direct evidence for single cancer cell killing using 149Tb-rituximab. Eur J Nucl Med Biol Imaging 31:547–554

    CAS  Google Scholar 

  173. Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibli R, Türler A, Zhernosekov K (2011) The low-energy β and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol 38:917–924

    CAS  PubMed  Google Scholar 

  174. Müller C, van der Meulen NP, Benesova M, Schibli R (2017) Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising alpha-particle, β-particle, and Auger electron emitters. J Nucl Med 58:91S–96S

    PubMed  Google Scholar 

  175. Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E (2016) Comparison between three promising β-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics 6:1611–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jennewein M, Qaim SM, Kulkarni PV, Mason RP, Hermanne A, Rösch F (2005) A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim Acta 93:579–583

    CAS  Google Scholar 

  177. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS, Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via natBr(p,x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system. Appl Radiat Isot 70:595–601

    CAS  PubMed  Google Scholar 

  178. Oláh Z, Szücs Z, Varga Z, Dóczi R (2015) Development of 77Ge/77As parent-daughter system for periodic removal of 77As for environmental sanitation and biochemical purposes. Appl Radiat Isot 122:111–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Qaim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaim, S.M., Scholten, B. & Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318, 1493–1509 (2018). https://doi.org/10.1007/s10967-018-6238-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6238-x

Keywords

Navigation